AFRL-IF-RS-TR-2002-221

Final Technical Report
October 2002

JOINT FORCE AIR COMPONENT COMMANDER
(JFACC) PROJECT

Washington University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J110

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-221 has been reviewed and is approved for publication.

O QN
APPROVED: e

CARL A. DEFRANCO, Jr.
Project Engineer

FOR THE DIRECTOR:

JAMES W. CUSACK

Chief, Information Systems Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
Oct 02

3. REPORT TYPE AND DATES COVERED
Final Sep 99 — Jun 01

4. TITLE AND SUBTITLE
JOINT FORCE AIR COMPONENT COMMANDER (JFACC) PROJECT

6. AUTHOR(S)

Hiro Mukai

5. FUNDING NUMBERS
C -F30602-99-2-0551

PE -63760E
PR -J110
TA - 00

WU -01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Dept of Systems Science and Mathematics
Washington University

Campus Box 1040

St Louis, MO 63130

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFSA
525 Brooks Rd
Rome, NY 13441-4505

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-221

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Carl DeFranco, IFSA, 315-330-3096, defrancoc@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

Application of algorithms based on advanced mathematical & engineering disciplines has the potential of creating an
interdisciplinary field of Command & Control. Careful application of the ideas of differential games combined with

stochastic processes gives an effective means of countering enemy action in a timely manner and achieving specified
goals. This work describes the results of experiments examining the combination of feedback control and game theory,
particularly continuous feedback of the Nash solution to a zero-sum game. The work includes a model of air mission
dynamics, and applies nonlinear continuous-time deterministic differential equations using an iterative method based on
successive local linear or quadratic approximations to reduce complexity. Additional work includes results of Kalman
filtering used to estimate enemy state from partial measurements.

14. SUBJECT TERMS

JFACC, command and control, C2 experimentation

15. NUMBER OF PAGES
373

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Contents

1

Executive Summary

Experiment 1: Combat Modeling and Validation 1
Experiment 2: Controller Performance Comparison with Other Controllers 2
Experiment 3: Controller Performance under Noise in the State Observation. 2
Experiment 4: Controller Performance under Parameter Variations 2
Experiment 5: Controller Computational Complexity, 3
Experiment 6: Controller with a Kalman Filter for Estimation 3
Experiment 7: Controller Applied to a More RealisticPlant 3
Experiment 8: All Quadratic Method for Nash Computation 3
Experiment 9: Detector Performance under Noise 4
Experiment 10: Detector Performance under Parameter Variations 4
Experiment 11: Method of Characteristics 4
Experiment 12: Game FlowModel 5
Experiment 13: Discrete Platform Dynamics 5
Experiment 14: Non-linear Detector for the Fully Non-linear Model 6
Experiment 15: Comparison with Honeywell’'s Results 6
Experiment 16: Controller Computational Complexity: Correction 6
Experiment 17: Controller with a Kalman Filter for Estimation 6
Experiment 18: Method of Characteristics: Addendum, 7
Experiment 19: New Game Flow Models 7
Combat Modeling and Validation 9
1.1 Executive SUmmAary o e e 9
1.2 Purpose of the Experiment o 10
1.3 Hypothesis to Prove or Disprove oo 10
1.4 Introduction e e e e e 10
1.41 Notation. o v it e e e e e e e 11
1.5 Random Variables e 11
1.6 Uncoordinated Target Selection 12
1.6.1 Defining the Markov Chain 13
1.7 Coordinated Target Selection e 14,
1.7.1 Case 1 : Independent Round Arrival, No Wrap-Around 14
1.7.2 Case 2 : Independent Round Arrival, With Wrap-Around 15
1.7.3 Defining the Markov Chain 16
1.8 Evolution of Expected Values 16
1.8.1 Uncoordinated Target Selection 16
1.8.2 Coordinated Target Selection L 17
1.83 Summary of ODE’S’ e 18
1.9 Weapons Expenditure 18
1.9.1 Uncoordinated Target Selection 19
1.9.2 Coordinated Target Selection 19

1.10 Experiment Results and Analysis,

1.11 Conclusions and Recommendations
1.12 Appendix: Mission Dynamics Continuous-Time Model 3.0
1.12.1 Modeling Assumptions o o e e e e e
1.122 State Equations e
Bibliography e e e e e e
Controller: Comparison with Other Controllers
2.1 Executive Summary e e e e e
2.2 Experiment Scope e e e e e e e e e e e e
2.3 Experiment Results. e
2.3.1 Scenario One: Cross v i i i it i i e e
2.3.2 Scenario Two: Joust e e e e e e
24 Conclusions L e e e e e e e e e e e e e
25 References L e e e e e e e e e
2.6 Appendix L e e e e e
26.1 ScenarioFilefor Cross e
2.6.2 ScenarioFilefor Joust e

Controller Performance under Noise

3.1 Executive Summary e e e e e
3.2 Purpose of the Experiment e
3.3 Hypothesis to Proveor Disprove
3.4 Experimental Setup e e e e e
3.5 Experimental Results. e
3.6 Conclusions and Recommendations L L.

Controller Performance under Parameter Variations

4.1 Executive Summary L L e
4.2 Purpose of the Experiment e
4.3 Hypothesis to Prove or Disprove e
4.4 Experimental Setup e e e e e
45 Experimental Results. e e

451 Weight Mismatches. L o

4.5.2 Experiments with Weight Mismatches
4.6 Conclusions and Recommendations

Controller Computational Complexity

5.1 Executive Summary e e e e e e
52 Introduction. L L e e e e e e e e e
53 Experiment 5.1 Lo e e e
531 Omnewvs. One i e e
532 Multi-units Case e
5.3.3 Multi-units Case And Computational Complexity
54 Experiment 5.2 L e e
55 Conclusions L L e e e

Controller with a Kalman Filter

6.1 Executive Summary L e e e
6.2 Purpose of the Experiment L. e
6.3 Hypothesis to Prove or Disprove L0 .
6.4 Experiment Setup and Experiment Design,
6.5 Experiment Results and Ampalysis L L o oL,

6.6 Conclusions and Recommendations« ot it e e
Bibliographyo e

7 Controller Applied to a More Realistic Plant
7.1 Executive SUIMIMATY o o v o o v e e e b e e e e e e e e
7.2 Purpose of the Experiment oo
7.3 Hypothesis to Prove or Disproveo oo
7.4 Experiment Setup e
7.5 Experiment Results. o
76 Analysis e
7.7 Conclusions and Recommendations e
Bibliography

"8 All Quadratic Method for Nash Computation
8.1 Executive SUMINALY« ¢ o v o o vt i e e e e
8.2 Purpose of the Experiment o
8.3 Hypotheses to Proveor Disprove
8.4 Experiment Setup i
8.4.1 Problem and Nash Solutions 0 e
8.4.2 Sequential Quadratic-Quadratic Method oo oo
8.4.3 Riccati Equation Method L o e
8.44 SQQM Iterative Algorithm for Game Solution
8.5 Experiment Results and Analysis o
8.6 Conclusions and Recommendations o L oo e
Bibliography e

9 Detector Performance under Noise
9.1 Executive Summaryt e e
9.2 Purpose of the Experiment e
9.3 Hypothesis to Prove or Disprove o oo
9.4 Experiment Setup
9.5 Exampleof experiment e
9.6 Results of the Experiments o e
9.7 Conclusions and Recommendations oo
Bibliography

10 Detector Performance under Parameter Variations
10.1 Executive SUMINAryo oo v i i
10.2 Purpose of the Experimento
10.3 Hypothesis to Prove or Disprove oo
10.4 Experiment setup
10.5 Example of experiment
10.6 Results of the experiments
10.7 Conclusions and Recommendationso oo oo
Bibliography

11 Method of Characteristics
11.1 Executive SUummary o o i e e e e
11.2 Purpose of the Experiment
11.3 Hypothesis to Prove or Disprove
11.4 Experiment Setup oo o e
11.5 Experiment Results.o e
11.5.1 JOUSE . . o o o e e e e e e e e e e e e e

iii

11.5.2 Cross
11.6 Analysis e
11.7 Conclusions and Recommendations
Bibliography

12 Game Flow Model
12.1 Executive Summary o ot e e e
12.2 Purpose of the Experiment e
12.3 Hypothesis to Prove or Disprove
12.4 Experiment Setup
12.5 Experiment Results
12.6 Analysis

12.7 Conclusions and Recommendations

13 Discrete Platform Dynamics
13.1 Executive Summary
13.2 Introduction e e e e e e e
13.3 Hypothesisto Prove e e e
13.4 Stochastic Discrete Model Description
13.5 Experiment and Methods
13.6 Conclusion

14 Non-linear Detector for Non-Linear Model

14.1 Executive SUMMATY« « o v et e e e e e e e e
14.2 Purpose of the Experiment e e
14.3 Hypothesis to Prove or Disprove
14.4 Experiment Setup
14.5 Example of Experiment o o
14.6 Results of the Experiments
14.7 Conclusions and Recommendations

Bibliography

15 Comparison with Honeywell’s Results
15.1 Executive Summary
152 Introduction e e e e e e e
15.3 Experiment Setup e e
15.4 Experiment Results and Analysiso oo
15.5 Conclusions and Recommendations

16 Controller Computational Complexity: Correction
16.1 Executive Summary
16.2 Introduction L e e e e e e e e e
16.3 Experiment 5.1 L .. e

16.3.1 Onevs. One e e e e
16.3.2 Multi-units Case e e e e
16.3.3 Multi-units Case And Computational Complexity
16.4 Experiment 5.2
16.5 Conclusions

225
225
225
226
226
230
235
235

237
237
238
238
238
239
239

255
2585
255
256
257
259
262
266
271

273
273
273
274
276
283

17 Controller with a Kalman Filter for Estimation
17.1 Executive Summary 00000
172 Introduction. . ..o
17.3 Kalman filters for systems with unknown mputso
17.4 Experiment scope and setup L., e e e e
17.5 Experiment Results and Analysis S
176 Conclusions oo

18 Method of Characteristics: Addendum
181 Bxecutive Summary00
18.2 Purpose of the Experiment 1T
183 Hypothesis o 0
184 Methods
185 Experiment Scope o0 0T
18.6 Experiment Results. T
187 Analysis L

19 New Game Flow Models

19.1 Bxecutive Summary o 0000
19.2 Introduetion
19.3 Mathematical Model 70
19.4 Solution of the System Equations _ . . """
19.5 Differential Game 0 P
19.6 Solution of the Differential Game 7
19.7 Experimental Results. 00

19.7.1 Bxperiment 1.o

19.72 Experiment 2 o000
19.8 Conelusions oo o

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19

21
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
217
2.18
2.19
2.20
2.21
2.22

Probability distribution for Uncoordinated Target Selection for Scenario A L. 21
Probability distribution for Coordinated Target Selection for Scenario A 21
Probability distribution for Uncoordinated Target Selection for Scenario B 22
Probability distribution for Coordinated Target Selection for Scenario B 22
Probability distribution for Uncoordinated Target Selection for Scenario C 23
Probability distribution for Coordinated Target Selection for Scenario C 23
Evolution of the expected values, Experiment 1.1 26
Evolution of the expected values, Experiment 1.2 27
Evolution of the expected values, Experiment 1.3 28
Evolution of the expected values, Experiment 1.4 29
Evolution of the expected values, Experiment 1.5 30
Evolution of the expected values, Experiment 1.6 31
Evolution of the expected values, Experiment 1.7 32
Evolution of the expected values, Experiment 1.8 33
Evolution of the expected values, Experiment 1.9 34
Evolution of the expected values, Experiment 1.10 35
Evolution of the expected values, Experiment 1.11 36
Evolution of the expected values, Experiment 1.12 37
Comparison of Expected Values for Experiment 1.8 38
Cross 1: Trajectories oo i ot it i i e e e 44
Cross 1: Firing Intensities L e 45
Cross 1: Velocities o o i e e 45
Cross 1: Number of Platforms 46
Cross 2: Trajectories o o o it i e e e 46
Cross 2: Firing Intensities 47
Cross 2: Velocities 0 i e e e e 47
Cross 2: Numberof Platforms 48
Cross 3: Trajectories o o i i e e 48
Cross 3: Firing Intensities e 49
Cross 3: Velocities o i i i i i e e 49
Cross 3: Number of Platforms e e e e 50
Cross 4: Trajectories o o i it it e e e e 50
Cross 4: Firing Intensities o e 51
Cross 4: Velocities o o i i i e e 52
Cross 4: Numberof Platforms« o o i i i i 52
Joust 1: Trajectories o o v i it i e e e 53
Joust 1: Firing Intensities e e e e e e 53
Joust 1: Velocities e e 54
Joust 1: Number of Platforms oo 54
Joust 2: Trajectories e e e 55
Joust 2: Firing Intensities e 55

2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30
2.31
2.32

3.1
3.2
3.3
3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
410

4.11

4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

Joust 2: Velocities e e e e e e e e e e e e e e e e 56

Joust 2: Number of Platforms o oL 56
Joust 3: Trajectories e e 57
Joust 3: Firing Intensities 57
Joust 3: Velocities e 58
Joust 3: Number of Platforms, 58
Joust 4: Trajectories e 59
Joust 4: Firing Intensities L L e 59
Joust 4: Velocities e e 60
Joust 4: Number of Platforms o, 60
Controller-Plant-Controller Setup 70
Conceptual Representation of the Controller 72
The Scenario without any Noise o 0oL 75
Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

10 o e e 76
Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

100 - o e e e e 76
Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

G000 . e e e e e e e e e e e e e 7
Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

13096 . o o o e e e e e 77
A Sample Path (Noise Amplitude 1%) o oL 78
A Sample Path (Noise Amplitude 10%) 78
A Sample Path (Noise Amplitude 90%) 79
A Sample Path (Noise Amplitude 90%) 79
A Sample Path (Noise Amplitude 130%) L. 80
A Sample Path (Noise Amplitude 130%) o 80
A Sample Path (Noise Amplitude 130%) 81
Case 1: Red’'s Weight is 20 85
Case 2: Red’s Weight is 40 85
Case 3: Red’s Weight is 60 e 86
Both sides exactly know the probability of ki1 0.3, 88
Red Underestimates Blue (Red thinks pkillBlue=0.1) pkill:0.3 88
Red Overestimates Blue (Red thinks pkillBlue=0.8) pkill:0.3 89
Blue Underestimates Red (Blue thinks pkillRed=0.1) pkill:0.3 89
Blue Overestimates Red (Blue thinks pkillRed=0.8) pkill:0.3 90
Both Sides Underestimate (Red thinks pkillBlue==0.1 similarly for Blue) pkill:0.3 90
Red Underestimates Blue (Red thinks pkillBlue=0.1) and Blue overestimates Red (Blue

thinks pkillRed=0.8) pkill:0.3 91
Blue Underestimates Red (Blue thinks pkillRed=0.1) and Red overestimates Blue (Red

thinks pkillBlue=0.8) pkill:0.3 91
Both Sides Overestimate (Red thinks pkillBlue=0.8 similarly for Blue) pkill:0.3 92
Both sides exactly know the probability of kill0.8 93
Red Underestimates Blue (Red thinks pkillBlue=0.1) pkill:0.8 93
Red Underestimates Blue (Red thinks pkiliBlue=0.4) pkill:0.8 94
Blue Underestimates Red (Blue thinks pkillRed=0.1) pkill:0.8 94
Blue Underestimates Red (Blue thinks pkillRed=0.4) pkill:0.8 95
Both Sides Underestimate (Red thinks pkillBlue=0.1 similarly for Blue) pkill:0.8 95
Both Sides Underestimate (Red thinks pkillBlue=0.4 similarly for Blue) pkill:0.8 96

Both Sides Underestimate (Red thinks pkillBlue=0.4 Blue thinks pkillRed=0.1) pkill:0.8 . 96
Both Sides Underestimate (Red thinks pkillBlue=0.1 Blue thinks pkillRed=0.4) pkill:0.8 . 97

vii

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25

81
8.2

Initial Trajectories In One vs. One, 101

Control Update In One vs. One i 101
Nash Trajectories In Omevs. One. 102
Nash Firing Intensities InOnevs. One 102
Nash Number Of Platforms In Onevs. One e e e e 103
Initial Trajectories In Three vs. Three 104
Control Update In Three vs. Three 105
Nash Trajectories In Three vs. Three., 105
Nash Firing Intensities In Three vs. Three, 106
Nash Number Of Platforms In Threevs. Three 107
The Computational Time Changes As The Number Of Units Is Increased 108
The Number Of Iterations Changes As The Number Of Units Is Increased 108
The Computational Time Changes As The Mission Duration Is Increased 109
Block diagram of the Extended Kalman Filter 113
The flowchart of the estimation algorithm 115
Closed-loop EKF combined with the game theoretic controller 116
Blue states, and red states {(observed (solid) and estimated (dotted)), no noise. 118
Blue states, and red states (observed (solid) and estimated (dotted)), maximum noise. . . 119
Trajectories of umits e 120
Speed controls e e e e 121
Fireintensities o e 121
Number of platforms e 122
Weapons per platform o e 122
Simulink Implementation of EPMDMo oo 127
Strategy A (cross): Blue Trajectory 131
Strategy A (cross): Red Trajectory e 131
Strategy A (cross): Number of Platforms 131
Strategy A (cross): FireIntesity 131
Strategy A (cross): Speed Control 132
Strategy A (cross): Weapons Expenditures0 0L, 132
Strategy B (cross): Blue Trajectory 132
Strategy B (cross): Red Trajectory 132
Strategy B (cross): Number of Platforms 133
Strategy B (cross): Fire Intesity 133
Strategy B (cross): Speed Control o 133
Strategy B (cross): Weapons Expenditures 133
Strategy A (joust): Blue Trajectory Lo 134
Strategy A (joust): Red Trajectory L o 134
Strategy A (joust): Number of Platforms 134
Strategy A (joust): FireIntesity 134
Strategy A (joust): Speed Control o 135
Strategy A (joust): Weapons Expenditures 0L, 135
Strategy B (joust): Blue Trajectory 135
Strategy B (joust): Red Trajectory 135
Strategy B (joust): Number of Platforms 136
Strategy B (joust): Fire Intesity 136
Strategy B (joust): Speed Control 136
Strategy B (joust): Weapons Expenditures L L. 136
Convergence of SQQM and SLQM (Model 2, 1 unit vs. 1 unit). 149
Convergence of SQQM and SLQM (Model 3, 1 unit vs. T unit). 150

viii

8.3
8.4
8.5

9.1

9.2

9.3

9.4
9.5

9.6

9.7
9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

Convergence of SQQM and SLQM (Model 2, 5 units vs. 5 units). 151

Convergence of SQQM and SLQM (Model 3, 5 units vs. 5 units). 151
Convergence of SQQM, SLQM and SLQM-SQQM (Model 2, 5 units vs. 5 units). 152
Engagement enemy actions (to be detected).. oL, 158

Time history of the number of platforms of the four units. The two top plots represent
the number of platforms of the Red units, the two bottom plots represent the number of

platforms of the Blue units. e 159

Noisy outputs. Noise-corrupted measured observations (top: number of platforms of the

first Blue unit, bottom: number of platforms of the second Blue unit.. 160
Block diagram describing the experiment. oo 161
Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter

(bottom) under noise with energy equal to 15% of the energy of the noise-free output. . . 162

Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 15% of the energy of the noise-free output.. 163
State evolution of the game-theoretic (top) and Kalman-like filter (bottom). 164
Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter

(bottom) under noise with energy equal to 25% of the energy of the noise-free output. . . 165

Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 25% of the energy of the noise-free output.. 167
Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter

(bottom) under noise with energy equal to 35% of the energy of the noise-free output. . . 167

Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 35% of the energy of the noise-free output.. 168

Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 55% of the energy of the noise-free output.. 168

Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bot- .

tom) under noise with energy equal to 55% of the energy of the noise-free output.. 169

Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 80% of the energy of the noise-free output.. 169

Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 80% of the energy of the noise-free output.. 170

Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 110% of the energy of the noise-free output. 170

Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bot-

tom) under noise with energy equal to 110% of the energy of the noise-free output. 171
Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 1. The

six responses correspond to six different random choices of the seed of the noise signals.

The energy of the noise signals is equal to 15% of the output signal energy. 171
Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 2. The

six responses correspond to six different random choices of the seed of the noise signals.

The energy of the noise signals is equal to 15% of the output signal energy. 172
Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 1. The

six responses correspond to six different random choices of the seed of the noise signals.

The energy of the noise signals is equal to 25% of the output signal energy. 172
Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 2. The

six responses correspond to six different random choices of the seed of the noise signals.

The energy of the noise signals is equal to 25% of the output signal energy. 173
Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 1. The

six responses correspond to six different random choices of the seed of the noise signals.

The energy of the noise signals is equal to 35% of the output signal energy. 173

ix

9.23 Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 2. The
six responses correspond to six different random choices of the seed of the noise signals.
The energy of the noise signals is equal to 35% of the output signal energy. 174

10.1 Engagement enemy actions (to be detected).. oL, 180
10.2 Time history of the number of platforms of the four units. The two top plots represent
the number of platforms of the Red units, the two bottom plots represent the number of

platforms of the Blue units. e 181
10.3 Noisy outputs. Noise-corrupted measured cbservations (top: number of platforms of the

first Blue unit; bottom: number of platforms of the second Blue unit). 182
10.4 Block diagram describing the experiment.o oo 183

10.5 Response to Action 1 of the detection filter in the presence of uncertainty in the parameter

ay. The actual value of a; varies from 110% (top graph) to 150% (bottom graph) of the

nominal valtle. e e e e e e e e e e 184
10.6 Response to Action 2 of the detection filter in the presence of uncertainty in the parameter

a1. The actual value of o varies from 110% (top graph) to 150% (bottom graph) of the

nominal value. L e 185
10.7 Response to Action 1 of the detection filter in the presence of uncertainty in the parameter

az. The actual value of ay varies from 110% (top graph) to 150% (bottom graph) of the

pominal value. e e e e e e e e e 186
10.8 Response to Action 2 of the detection filter in the presence of uncertainty in the parameter

agz. The actual value of o varies from 110% (top graph) to 150% (bottom graph) of the

pominal vale. e e e e e e e e e e e e e 187
10.9 Response to Action 1 of the detection filter in the presence of uncertainty in the parameter

B11. The actual value of By varies from 110% (top graph) to 150% (bottom graph) of the

nominal value. e e e e e e e e e e e e e e 187
10.10Response to Action 2 of the detection filter in the presence of uncertainty in the parameter

f11. The actual value of B;; varies from 110% (top graph) to 150% (bottom graph) of the

nominal value. e e e 188
10.11 Response to Action 1 of the detection filter in the presence of uncertainty in the parameter

B1z. The actual value of By, varies from 110% (top graph) to 150% (bottom graph) of the

nominal value. e e e e e e e e 188
10.12 Response to Action 2 of the detection filter in the presence of uncertainty in the parameter

2. The actual value of B, varies from 110% (top graph) to 150% (bottom graph) of the

nominal value.
10.13 Response to Action 1 of the detection filter in the presence of uncertainty in the parameter

B21. The actual value of 8, varies from 110% (top graph) to 150% (bottom graph) of the

nominal value. e e e e e e e e e e e e 189
10.14Response to Action 2 of the detection filter in the presence of uncertainty in the parameter

B12. The actual value of B, varies from 110% (top graph) to 150% (bottom graph) of the

nominal value. e e e e e e e e e e e e e e 190
10.15 Response to Action 1 of the detection filter in the presence of uncertainty in the parameter

B22. The actual value of B,, varies from 110% (top graph) to 150% (bottom graph) of the

nominal valtie. L L e e e e e e e e e e e e e e 190
10.16Response to Action 2 of the detection filter in the presence of uncertainty in the parameter

B22. The actual value of G2 varies from 110% (top graph) to 150% (bottom graph) of the

nominal value. L e e e e e 191
11.1 Trajectories o o o e e e e e e e e e 197
11.2 Engagement Intensities and Number of Platforms 198
11.3 VeloCities o o o e e e e e e e e e e e e 199
11.4 Trajectories v o v v i it e e e e e e e e e 200
11.5 Engagement Intensities and Number of Platforms, .. 201

11.6 VeloCities v v vt e 202

11.7 Trajectories o o i v i i e e e e e e 203
11.8 Engagement Intensities and Number of Platforms 204
11.9 Velocities o o o o e e e e e 205
11.10Trajectories o e e e e 206
11.11Engagement Intensities and Number of Platforms, 207
11.12Velocities o e e e e e e e e 208
11.13Trajectories o it e e e e e e e e e e e 209
11.14Engagement Intensities and Number of Platforms 210
11.15Velocities e e 211
11.16Trajectories o o e e e e e e e 212
11.17Engagement Intensities and Number of Platforms 213
11.18Velocities o v o e e e e e e e 214
11.19Trajectories v vt e e e e e e e e e 215
11.20Engagement Intensities and Number of Platforms 216
11.21Velocities L . e e e e e e e e e e e e e e 217
11.22Trajectories o o i e e e e e e e e e e 218
11.23Engagement Intensities and Number of Platforms, 219
11.24Velocities o e e e 220
12.1 Map of the game area: light colored cells indicate smooth area. The white contour line
marks the boundary between the two different regions. 0. 227
12.2 Efficiency of attack for the blueforce. 228
12.3 Efficiency of attack for theredforce. 0oL, 229

12.4 (a) Running cost associated with instant values of the strength concentration in the cells.
(b) Terminal cost associated with final values of the strength concentration in the cells.

Lighter color indicates higher value. 229
12.5 Convergence of SLQ algorithm Lo e 230
12.6 Initial Strength Distribution for Blue force. Arrows indicate magnitude of the velocity
components across the boundaries. oL o oo oo oL, 231
12.7 Initial Strength Distribution for Red force. Arrows indicate magnitude of the velocity
components across the boundaries. L L oo o oo 232
12.8 Final Strength Distribution for Blue force. Arrows indicate magnitude of the velocity
components across the boundaries. o o oL oo 233
12.9 Final Strength Distribution for Red force. Arrows indicate magnitude of the velocity
components across the boundaries. L L L L oo oo oL 234

13.1 Comparison of MDCM (- -) and MDCM-SD (-) for Game Trajectories (One sample run). 242
13.2 Comparison of MDCM (- -) and MDCM-SD {-) for the Number of Platforms (One sample

TUD). « o o et e e e e 242
13.3 Comparison of MDCM (- -) and MDCM-SD (-) for Fire Intensities (One sample run). . . 243
13.4 Comparison of MDCM (- -) and MDCM-SD (-) for Weapons Expenditures (One sample

TUL: + b v v e v e e et e e e e e e e e e e e e e e 243
13.5 Comparison of MDCM (- -) and MDCM-SD (-) for Speed (One sample run). 244
13.6 Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Game Trajectories (At =

0.001) « o o e e e e 245
13.7 Comparison of MDCM (- -} and Averaged MDCM-SD (-} for the Number of Platforms

(AE=0.001). . . ot o e e e 246

13.8 Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Fire Intensities (At = 0.001). 246
13.9 Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Weapoens Expenditures (At =

13.10Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Speed (At = 0.001). 247
13.11Comparison of MDCM (- -} and Averaged MDCM-SD (-) for Game Trajectories (At = 0.01).248

xi

13.12Comparison of MDCM (- -) and Averaged MDCM-SD (-) for the Number of Platforms

(A =0.01). . . . oot e 249
13.13Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Fire Intensities (At = 0.01). 249
13.14Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Weapons Expenditures (At =

0.01). o o e e 250
13.15Comparison of MDCM (- -} and Averaged MDCM-SD (-) for Speed (At =0.01). 250
13.16Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Game Trajectories (At = 0.1).251
13.17Comparison of MDCM (- -) and Averaged MDCM-SD (-) for the Number of Platforms

(AE=0.1). o o oo e 251
13.18Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Fire Intensities (At = 0.1). 252
13.19Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Weapons Expenditures (At =

00). o e 252
13.20Comparison of MDCM (- -} and Averaged MDCM-SD (-) for Speed (At =0.1).. 253
14.1 Geographical areas in which Red and Blue unitscanevolve. 258
14.2 Trajectories for the Red and Blue units in Experiments 1and 2. 258
14.3 Engagement actions of the Red units versus the Blue units in Experiment 1. 259
14.4 Evolution in time of the number of platforms in the Blue and Red Units in Experiment 1. 260
14.5 Action 1 and Performance Signal 1 in the Experiment 1. 260
14.6 Action 2 and Performance Signal 2 in the Experiment 1. 261
14.7 Internal state of the detection filter in Experiment 1. 261

14.8 Actions 1 and 2 and Performance Signal 1 for the Linear Detection Filter in Experiment 1.262
14.9 Actions 1 and 2 and Performance Signal 2 for the Linear Detection Filter in Experiment 1.263

14.10 Actions 1 and 2 of the Red Units in Experiment 2. 263
14.11 Evolution in time of the umber of platforms of the Blue Units in Experiment 1 and
Experiment 2. e e e e e e 264
14.12 Action and Performance Signal 1 in Experiment 2. 264
14.13 Action and Performance Signal 2 in Experiment 2., 265
14.14 Actions 1 and 2 and Performance Signal 1 of the linear filter in Experiment 2. 265
14.15 Actions 1 and 2 and Performance Signal 2 of the linear filter in Experiment 2. 266
14.16 Trajectories of the Red and Blue Units in Experiment 3., 267
14.17 Evolution in time for the number of platforms of the Blue Units in Experiment 1 and
Experiment 3. L. e e e e e 267
14.18 Action 1 and Performance Signal 1 in Experiment 3.. e e e e e e e 268
14.19 Action 2 and Performance Signal 2 in Experiment 3. 268
14.20 Actions 1 and 2 and Performance Signal 1 of the linear filter in Experiment 3. 269
14.21 Actions 1 and 2 and Performance Signal 2 of the linear filter in Experiment 3. 269
15.1 Flowchart for interaction of software components 275
15.2 Initial positions of the umits. e 276
15.3 Control update in Example 1 Lo 278
15.4 Cost function value for Example 1 o 278
15.5 Trajectories of units, Example 1, Sortie 1., 279
15.6 Trajectories of units, Example 1, Sortie 2. Lo 279
15.7 Trajectories of units, Example 1, Sortie3. oL 280
15.8 Control update in Example 2 280
15.9 Cost function value for Example 2 e e 281
15.10Trajectories of units, Example 2, Sortie 1.o 0oL 281
15.11Trajectories of units, Example 2, Sortie 2. 282
15.12Trajectories of units, Example 2, Sortie 3. Lo o L 282
16.1 Initial Trajectories for Three vs. Three o o L. 289
16.2 Convergence for Control Updates for Three vs. Three 289

xii

16.3 Nash Trajectories for Three vs. Three, 290
16.4 Nash Firing Intensities for Three vs. Three 290
16.5 Nash Number Of Platforms for Three vs. Three 291
16.6 The Computational Time Changes As The Number Of Units Is Increased 291
17.1 Block diagram of the extended Kalman filbter 298
17.2 The flow chart of the estimation algorithm. 299
17.3 The closed-loop game theoretic controller combined with the Kalman filter. 301
17.4 Observed Trajectories of Units, 303
17.5 Observed Numbers of Platforms 303
17.6 Weapons per platform L e 304
17.7 Speed Controls e e 304
17.8 Fire Intensities L e 305
17.9 Blue states for high sensornoise Lo L. 307
17.10Red states for high sensornoise 307
17.11Red inputs for high sensormoise 308
17.12Blue states for high process noise e e e e e e e e e e e e e 309
17.13Red states for high process noise L L e 309
17.14Red inputs for high processnoise Lo e 310
17.15Blue states for high process and sensornoises 0oL, 311
17.16Red states for high process and sensor noises 311
17.17Red inputs for high process and sensornoise 0., 312
17.18Trajectoriesof Units e 313
17.19Number of Platforms e 313
17.20Weapons per platform e e e e e e e 314
17.218peed Controls e 314
17.22Fire Intensities L e 315
17.23Blue states for high sensor noise forunitl 0. .. L. 316
17.24Blue states for high sensor noise forunit2 316
17.25Red states for high sensor noise forunitl 317
17.26Red states for high sensor noise forunit2 L Lo oL L. 317
17.27Red states for high sensor noise forunit3, 318
17.28Red inputs for high sensor noise forunitl, 318
17.29Red inputs for high sensor noise forunit2 L L., 319
17.30Red inputs for high sensor noise forunit3 L ... 319
18.1 Nash Trajectories for Three Units vs. Three Units 324
18.2 Nash Engagement Intensities and Number of Platforms 325
19.1 Cell numbering scheme. L e e 331
19.2 Game Board (clockwise starting from top left figure: terminal payoff associated with final
values of the strength concentration in the cells; running cost associated with instanta-
neous values of the strength concentration in the cells; local attrition; and running cost on
velocity). Darker shade indicates higher value. 334
19.3 Initial strength distribution of the blueforce. 335
19.4 Initial strength distribution of thered force., 335
19.5 Efficiency of attack for the blue and red forces. 336
19.6 Initial Nash Strength Distribution for Blue force. Arrows indicate magnitudes of the
velocity components across the boundaries. 338
19.7 Initial Nash Strength Distribution for Red force. Arrows indicate magnitudes of the ve-
locity components across the boundaries. o 0 oo, 338
19.8 Final Nash Strength Distribution for Blue force. Arrows indicate magnitudes of the velocity
components across the boundaries. L oo 339

xiii

19.9 Final Nash Strength Distribution for Red force. Arrows indicate magnitudes of the velocity

components across the boundaries. o oo oo 339
19.10Final Nash Strength Distribution for Blue force. 340
19.11Final Nash Strength Distribution for Red force. 341

19.12Game Board (clockwise starting from top left figure: terminal payoff associated with final
values of the strength concentration in the cells; running cost associated with instant values
of the strength concentration in the cells; local attrition; and running cost on velocity).

Darker shade indicates higher value. oo 342
19.13Initial strength distribution of the blue force. 343
19.14Initial strength distribution of the red force.o 343
19.15Efficiency of attack for the blue and red forces. 344
19.16Convergence of the SLQ algorithm. oo 345
19.17Initial Nash Strength Distribution for Blue force. Arrows indicate magnitudes of the

velocity components across the boundaries. 000 346
19.18Initial Strength Distribution for Red force. Arrows indicate magnitudes of the velocity

components across the boundaries. Lo oo 346
19.19Final Nash Strength Distribution for Blue force. Arrows indicate magnitudes of the velocity

components across the boundaries. oo 347
19.20Final Nash Strength Distribution for Red force. Arrows indicate magnitudes of the velocity

components across the boundaries.o oo 347
19.21Final Nash Strength Distribution for Blue force. 348
19.22Final Nash Strength Distribution for Red force. o .. 348
19.23Progression of the instantaneous Nash Strength Distributions for Blue and Red forces.

Arrows indicate magnitudes of the velocity components across the boundaries. 349

xiv

List of Tables

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

41

4.2

5.1
5.2
53

7.1
7.2
7.3
7.4
7.5

121
12.2

13.1
13.2
13.3
13.4
13.5

15.1
15.2
15.3
15.4

The Approximate Evolution of Expected Number of Platforms 18
Scenarios Used For Experiments« e 19
Lo-Norm of COVATIances v o v v v v o v vt e e e et et 24
L,-Norm of Error Between Actual and Approximate Expected Values 24
List 0f SCOMATIOS .+ + « « v v o o e e e e e e e e e e e e e e e e 44
Scenario One — Cross (Parameters Value) 61
Scenario Two — Joust (Parameters) 61
Experiment Results for Scenario one — Parameter Values 62
Experiment Results for Scenario One ~ Cost Componentso 62
Experiment Results for Scenario Two — Parameter Values 62
Experiment Results for Scenario Two — Cost Components 62
The Noise Levels for the Experiments oo 74
Different Experimental Setup for Weight Mismatches, Weights on Final Number of Red

Platformns . . o o v o e 84
Parameter Mismatches for the Experiments oo 87
DataFor One vs. One o v i i i e et e e e e e e e e e e e 100
Data For Three vs. Three« o o i o i e e i e e e e e e e e 103
Weights In Cost Function For Three vs. Three 104
Scenario Description 128
Cost Components of Objective Function Using cross Scenario 129
Total Costs of Objective Function using cross Scenario 129
Cost Components of Objective Function Using joust Scenario 129
Total Costs of Objective Function Using joust Scenario 129
Payoff function value for the initial guessed solution 230
Payoff function value for the Nash equilibrium solution 231
Cross 11 Scenario descriptiono 239
Summary of Results for One Sample Run with At =0.1.. 244
Summary of Results Averaged over 100 Sample Runs for At =0.001. 245
Summary of Results Averaged over 100 Sample Runs for At =0.01. 248
Summary of Results Averaged over 100 Sample Runs for At =01. 263
Probability of Kill Values oo 276
Weights in the Cost Function 277
Example 1: Probability of Success and Remaining Number of Platforms 283
Example 2: Probability of Success and Remaining Number of Platforms 283

XV

16.1 Data for Three vs. Three« . i i it et e e e e e e e e e e e 288

19.1 Payoff function value for the initial solution estimate 337
19.2 Payoff function value for the Nash equilibrium solution 337
19.3 Payoff function value for the initial solution estimate 345
19.4 Payoff function value for the Nash equilibrium solution 349

xvi

Acknowledgments and Disclaimer

We would like to thank the following people from other agencies: JFACC Program Manager at the DARPA
Agency: Major Sharon Heise, Ph. D.; Government Agents from the Air Force Research Laboratory at
Rome: Drs. Timothy Busch and Carl DeFranco; Members from Emergent Information Technologies:
Drs. Steve Morse and Mike Ownby.

We also would like to thank people from our office: Ms. Annette Crain and Ms. Kim Kalter.

Acknowledgments: “Effort sponsored by the Defense Advanced Research Projects Agency (DARPA)
and Air Force Research Laboratory, Air Force Materiel Command, USAF, under agreement number
F30602-99-2-0551. The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon.”

Disclaimer: “The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of the defense Advanced Research Pro jects Agency (DARPA), the Air Force Research Laboratory, or the
U.S. Government.”

xvii

Project Roster

Project Principal Investigator
Prof. Hiro Mukai

Co-Principal Investigators
Dean Christopher I. Byrnes
Prof. Alberto Isidori

Faculty Associates
Prof. I. Norman Katz
Prof. Heinz M. Schittler
Prof. Liyi Dai

Senior Research Associate
Dr. Akio Tanikawa

Postdoctoral Research Associates
Dr. Alpay Ozcan
Dr. Claudio De Persis
Dr. Fikret Caligkan
Dr. Guan Jun Wang
Dr. Iltker Tunay
Dr. Hong Gao
Dr. Mike Malisoff
Dr. Mingjun Zhang
Dr. Rafael de la Guardia
Dr. Raffaella De Santis
Dr. Ruisheng Li
Dr. Yuichi Sawada

Graduate Research Assistants
Ms. Chun-hua Lan
Mr. Evan Maki
Mr. Jenner Joseph
Mr. Long Yang
Mr. Paolo Rinaldi
Mr. Min Xu

Undergraduate Research Assistants
Mr. Justin Goodwin
Ms. Shirley Birman

xviii

List of Contributors

Chap.

sk
O WOoo~NDU R W R

—
[

13
14
15
16
17
18
19

Software and Experiments
Interim Technical Report

Tunay, Goodwin

de la Guardia, Zhang, Tunay
Ozcan, Wang, Tunay
ozcan, Tunay

Wang, Gao, Rinaldi, Tunay
Cahgkan, Lan, Tunay
Tunay, Goodwin

Rinaldi

De Persis

De Persis

Zhang

de la Guardia, Sawada
Addendum

Goodwin, Maki

De Persis

Tunay

Rinaldi,

Caliskan, Lan

Xu

de la Guardia

Writer
Submitted on Feb. 28, 2001

Tunay

de la Guardia, Zhang, Wang
Oann, Tanikawa

Ozcan, Tanikawa

Wang

Caligkan

Tunay

Rinaldi, Tanikawa

De Persis

De Persis

Tanikawa, Zhang

de la Guardia

Submitted on June 30, 2001
Goodwin, Maki

De Persis

Tunay

Rinaldi

Caliskan

Xu

de la Guardia

xix

Editor

Schittler
Katz
Schattler
Schattler
Schattler
Katz
Katz
Mukai
Isidori
Isidori
Katz
Mukai

Katz
Isidori
Mukai
Mukai
Katz
Katz
Mukai

Executive Summary

Experiments 1 through 12 were reported as the Interim Technical Report on February 28, 2001. Experi-
ments 13 through 19 were added on June 28, 2001.

Experiment 1: Combat Modeling and Validation

The purpose of this experiment is to validate the low-order ordinary differential equation (ODE) models,
which are derived to approximate the evolution of expected values in a more realistic hybrid-stochastic
model, called the Probabilistic Mission Dynamics Model (PMDM), under different assumptions for target
acquisition and target selection coordination. v

The hypothesis is that the evolution of the expected values of the Markov chain (MC) mission dynamics
can be approximated by a low-order ordinary differential equation (ODE) model, for a time period of
sufficient duration, when the control signals are generated in an open-loop setting.

This study first identifies four different sets of assumptions about target acquisition and target selection
coordination, which will be abbreviated as:

MARI (Acquisition Rate Independent) Uncoordinated target selection, independent target acquisition,
MARD (Acquisition Rate Dependent) Uncoordinated target selection, linear target acquisition,
MNWA (No Wrap-around) Coordinated target selection, without wrap-around,

MWWA (With Wrap-around) Coordinated target selection, with wrap-around.

Then, continuous-transition Markov chain (MC) models are developed under these assumptions. Using
the MC models, the probability distributions for the number of platforms and their exact expected values
78,1 are calculated as a function of time. Next, approximate ODE models of the evolution of the
expected values are derived.

The trajectories of the ODE models (7%, 7%) are compared with the exact outcomes (7%,7%) in
twelve experiments, summarized in the table below, which indicates the initial number of platforms and
the probability of kill for the Blue and Red units.

Scenarios Used In the Experiments

Scenario Types; N% =8, PF = 0.8
A NB =NR pB—=pF
B| NB=2NF, PE=PF
C| NB=NE PP = 2P}

The approximation quality of the ODE models is compared in the following table using the Ly norm:

1

Ly[0,10}-Norm of Error Between Actual and Approximate Expected Values

Exp.# | 1 |2 |3 4] s [6 7] 8 9o Jiw]nl] i

MARI MARD MNWA MWWA
In® —4B| | 0.14 | 0.37 | 0.01 || 0.06 | 0.03 | 0.02 || 1.35 | 5.80 | 0.02 || 1.53 | 4.74 | 0.16
In®—#%| [014] 135|025 | 0.06 | 0.06 | 0.04 || 1.35 | 5.80 | 0.04 || 1.53 | 0.06 | 0.58
In®—4B [o028]|172]026 012009006 270 | 11.60 | 0.06 || 3.06 | 4.80 | 0.74
417 - 7%

It was observed that the ODE models were good approximations under the uncoordinated target
selection assumption, and were found to be sufficient to represent the attrition dynamics in a differential
game setup in this case. The discrepancy between the MC and ODE models increase as the engagement
proceeds, which should be expected. Under the coordinated target selection assumption, the ODE ap-
proximations were worse. This can be partially explained by the fact that coordination implies firing in
rounds, and therefore platform loss is more discrete in nature.

Experiment 2: Controller Performance Comparison with
Other Controllers

This is experiment for hypothesis two. Both the plant and internal models are the same, i.e., the
Mission Dynamics Continuous-time Model (MDCM). There is no noise added to the state variables when
constructing the observed state variables (the output variables). The control actions of the Blue and
Red teams are generated by one of the following strategies: the proposed game theoretic algorithm, a
simple heuristic stochastic strategy (e.g. a movement bias is given toward targets), a simple heuristic
deterministic strategy, and a human planner.

The strategy adopted by Blue and Red is optimal with sense of a Nash equilibrium with respect to
the value function; that is, it maximizes the value function with respect to Red and minimizes it with
respect to Blue.

Experiment 3: Controller Performance under Noise in the
State Observation

We performed a series of experiments to evaluate the effectiveness of the current differential game technol-
ogy as a means of countering enemy actions under idealized situations with perfect information about the
enemy initial conditions and objectives, but with noisy measurements of the enemy state. Our main find-
ings are that while average values look good, individual sample paths might be quite surprising. One can
conclude that the game theoretic controller CPC (Controller-Plant-Controller) is sensitive to observation
noise. The first step to remedy the noise problem is to implement proper filters in the controllers.

Experiment 4: Controller Performance under Parameter
Variations

The purpose is to test how the Controller-Plant-Controller setup (CPC) will react to parameter mis-
matches between the battlefield and the sides as well as to parameter mismatches between the sides.
Assuming that both sides have chosen the game theory as the intelligence behind their controllers, sys-
tematic tests have been performed to investigate its sensitivity, i.e., how strongly the proposed game-
theoretic controller reacts to changes in the parameters. The important conclusion to draw from these
experiments is that even a single parameter can have important effects on the outcome of the battle. It
is therefore very important to be able to estimate the enemy parameters in order to succeed in the battle
simulation.

Experiment 5: Controller Computational Complexity

The purpose of experiment 5 is to test Hypothesis 5: The computational complexity of the differential
game technology based controller, combined with an extended Kalman filter or a nonlinear observer,
increases quadratically as a function of the number of units and linearly as a function of the mission
duration.

A number of experiments have been performed to test that Hypothesis.

In the set of experiments, both the plant and internal models are the same, given by MDCM. In a
first set of experiments we increase the number of units in the scenario while the mission objectives and
duration are kept constant. In a second set, the mission duration is increased, while the mission objectives
and the number of units are kept constant. The computation time and the number of iterations required
for the computation of the control law to converge were recorded in both cases.

Our main conclusions are that the computational time required to reach the convergence criterion
depends on many factors, such as the units categories, the number of units, initial trajectories, weights in
the cost function, step size in our numerical procedure and the manner of engagements as well as initial
positions and target locations. Similarly the number of iterations required to reach a convergence criterion
depends on the same factors. From our experimental results, major factors which affect the computational
time are the number of units and mission duration. As expected from theoretical considerations the
computational time of the controller increased quadratically as a function of the number of units. We
also saw that it increased linearly as a function of the mission duration, while the number of iterations
remained relatively constant as a function of the number of units.

Experiment 6: Controller with a Kalman Filter for Estima-
tion

In this chapter, we present an algorithm based on the Extended Kalman Filter (EKF) for state estimation
when enemy inputs are unavailable. We show the overall structure of the estimation scheme through a
block diagram. We present the implementation of the algorithm for the air operation theater through a
flowchart. We also present the results of simulation experiments.

Experiment 7: Controller Applied to a More Realistic Plant

The purpose of this experiment is to observe the effect of the discrepancy between internal and plant
models in a closed-loop setting. The internal model is a reduced-order ODE model, called the Mis-
sion Dynamics Continuous-time Model (MDCM 3.0), and the plant model is a full order ODE model,
abbreviated as EPMDM, which exactly describes the evolution of expected values in PMDM.

The hypothesis is that the current differential game technology would provide an effective means
of countering the enemy actions, who may be either following the Nash solution or using some simple
heuristic strategy, when noise-free state measurements are available, in spite of the mismatch between
the plant and the internal models.

It is concluded that approximating the plant model with a lower order internal model does not cause a
significant difference in game results, as long as the engagement terminates before one side is completely
wiped-off.

Experiment 8: All Quadratic Method for Nash Computa-
tion

The purpose of Experiment 8 is to develop, implement and test the Sequential Quadratic-Quadratic
Method (SQQM) for Differential Games, with two hypotheses of interest. The first hypothesis tests
whether the Nash solution computed through the Sequential Quadratic-Quadratic Method is identical

3

to the one found using the Sequential Linear-Quadratic Algorithm (SLQM); the second hypothesis tests
whether there is an improvement in convergence time. The issue of speed can become of great importance
in real time applications; moreover, due to the presence of nonlinearity and constraints, a different
approach serves the purpose of validating previous results. The algorithm is based on an iterative method
for computing a Nash solution to a zero-sum differential game with a system of nonlinear differential
equations.

Several experiments on different scenarios, based on both Model 2 and Model 3, have shown the
convergence of the outputs of the SQQM and SLQM algorithms to the same solution. So the first
hypothesis of Experiment 8 is proven true. As for the second hypothesis, namely an improvement in
convergence speed, the conclusion is that the SQQM alone proves to be fast in simple scenarios; if,
however, the starting trajectory and costate estimates are too far from the optimal solution, the SLQM
may be used at first, and then switch to the SQQM once the solution estimate is closer to the optimal
solution. In more complex cases, it is thus advantageous to blend the linear-quadratic algorithm and
the quadratic-quadratic algorithm, taking advantage of both the superior stability of the SLQM and the
superior speed of the SQQM.

Experiment 9: Detector Performance under Noise

In this Chapter we report the experiments performed to test the effectiveness of a newly designed “game-
theoretic-optimal” detection filter in handling noise-corrupted observations of the battlefield. The basic
purpose of the detection filter is to reveal the occurrence of an “engagement action” from enemy units by
monitoring only variables associated with the friendly units. The game-theoretic approach to the design-
of the filter makes it possible to attenuate the effects of measurement noises, but not the effects of the
action to be detected. The outcome of the experiments shows very clearly that the game-theoretic filter
is very effective under different situations of noise and compares very favorably with a filter designed on
the basis of classical state-estimation methods.

Experiment 10: Detector Performance under Parameter
Variations

This Chapter describes the experiment results regarding the game-theoretic detection filter under para-
metric uncertainty. The exact values of the parameters in the mathematical model of the battlefield are
not known, and only a nominal value is available. The filter, whose objective is to reveal the occurrence
of an “engagement action” from enemy units, is designed on the basis of the nominal value. This set of
experiments shows that the game-theoretic detection filter, although proven to be effective in the selective
attenuation of measurement noise, is relatively sensitive to the uncertainty in the parameters.

Experiment 11: Method of Characteristics

The purpose is to verify that the solution computed by the Sequential Linear-Quadratic Method (SLQM)
is the same as the Nash solution computed by the Method of Characteristics. We verified that the solu-
tions computed by the Sequential Linear-Quadratic Method (SLQM) are the same as the Nash solutions
computed by the Method of Characteristics under several scenarios. Also, systematic tests have been per-
formed to study robustness under two ways of enforcing constraints: penalties and explicit enforcement.
Specifically, weights for velocities, engagement intensities, final numbers of platforms and targets, as well
as maximum rated speeds have been varied. The results show that the trajectories are quite similar in
shape.

Experiment 12: ‘Game Flow Model

The purpose of this experiment was to validate the Gamc Flow approach. Validation is meant in the
sense that the game theoretic solution engine (i.e., the Sequential Linear — Quadratic algorithm), acting
on the Game Flow model, converges to a Nash solution that generally improves the value of the payoff
function.

The Game Flow model simulates a two-force game where the assets of each force, say the blue or red
forces, are distributed over a large geographical area.

In this experiment, the game area was a square divided into 64 square cells. At the start of the game,
the two forces were spread uniformly over the entire game area, but the total strength of the blue force
was only two thirds the total strength of the red force. To counter this mismatch, the attack range of the
blue force was larger, and the cost of movement for the blue force was lower than that of the red force.

The goal of each force was to reach the end of the game with a minimum loss of their own strength,
while inflicting maximum damage to the opposing force. Also, each force assigned more value (larger
weight) to the cells located in the middle of the game area than to the cells located near the boundaries, so
higher score might be earned by finishing the game with heavier strength concentration in more valuable
cells. Finally, movement of assets across the game area was penalized, so economy of movement was also
reflected in the final score of each force.

The game was carried out for a specified amount of time, with the phases of the game, i.e., asset
movement and attack, evolving uninterrupted for the duration of the game.

The SLQ algorithm was used to find a Nash equilibrium solution for the game. In this experiment,
the solver was stopped after 10 iterations, when the error (i.e., the norm of the velocity updates) was
approximately one percent of the original error. At this error level, further iterations had an insignificant
effect on the solution.

Experimental results show that the Nash equilibrium solution found by the SLQ algorithm, greatly
improved the performance of the two forces with respect to the value of the payoff function selected for
this experiment.

Qualitatively speaking, we can say that, in this scenario, the superiority of the blue force in the attack
range, and its lower cost on movement prevailed, allowing the blue force to keep the red force out of the
most valuable cells in the middle of the game area.

Experiment 13: Discrete Platform Dynamics

In any type of battlefield, the loss of platforms is usually a stochastic discrete event over time. In
JFACC simulations, however, the number of platforms has been modeled as a real number representing
its probabilistic expectation. In other words, our game-theoretic controller based on an expected-value
model needs to be tested on a more realistic plant, in which the numbers of platforms are integers. Our
approach was to first develop a model such that the dynamics of the number of platforms is a stochastic
discrete-event equation, i.e., in our new stochastic discrete-event model, the number of platforms in each
unit is an integer. Hence, the number of platforms changes from 10 to 9 at one point and then on to
eight platforms later based on the probability of kill. Moreover, the numbers of platforms vary differently
for different runs due to random number generators, which control the time when an actual kill occurs.
Using this new model, we conducted multiple runs and took an average. This average was then compared
against the results based on the expected-value model. We concluded that our game-theoretical controller
(based on the simpler expected-value model) performed just as well when tested on this more realistic
stochastic discrete-event plant model as when tested on the expected-value plant model.

5

Experiment 14: Non-linear Detector for the Fully Non-
linear Model

In Chapters 9 and 10 we have reported the results of experiments performed to test the effectiveness
of a “game-theoretic-optimal” detection filter to process noise-corrupted observations of the battlefield.
In those series of experiments, a bilinear approximation of the non-linear model of the battlefield was
considered and the filter was designed accordingly. When the fully non-linear model of the battlefield
is considered, a different (non-linear) detection filter must be designed. The purpose of this Chapter
is to present the experimental results concerning the non-linear filter and to compare them with those
obtained by using the detection filter designed on the basis of the bilinear model of the battlefield. For
the sake of simplicity, the case of noise-free measurements will be considered in this series of experiments.

Experiment 15: Comparison with Honeywell’s Results

A comparison of the platform loss and probability of success values is made between Washington Uni-
versity and Honeywell results on two example missions, each consisting of three sorties. The results are
similar in the first example. Due to a change in the initial number of Red fighters and their probability
of kill, the outcome of the second example is drastically different. It has also been observed that the
selection of weights in the cost function may affect the unit trajectories and platform loss significantly.

Despite running our Sequential Linear-Quadratic Method for 50 iterations or more, convergence to a
possible Nash solution was not achieved in either example, although the obtained unit trajectories and
platform loss numbers were reasonable, given the mission objectives.

Experiment 16: Controller Computational Complexity: Cor-
rection

The purpose of Experiment 16 is to correct an error present in the subprogram that evaluates the Jacobian
of the model MDCM. This error would have affected the results in cases in which multiple units are
deployed against multiple units and some units are not fired upon. This error affects only one such case
in the Interim Report (experiments 1 through 12), that is experiment 5.3.2. Therefore, a corrected version
of the subprogram for computing the Jacobian has been developed, and corrected computational results
are reported in this chapter. Even with this change we can draw the same conclusions as in Experiment
5; namely, the computational time is a quadratic function of the number of units.

Experiment 17: Controller with a Kalman Filter for Esti-
mation

In this chapter, we present how an algorithm based on the Extended Kalman Filter (EKF) for state
estimation is used in a differential game, which models the air operations of two opposing forces. We
show the overall structure of the game in a block diagram. We present the implementation of the algorithm
in a flowchart. We also present simulation results.

In an air operation game, it is reasonable to assume that one does not get direct information about
his enemy’s input. In this paper, we present an approach for estimating the states of the friendly as well
as enemy forces and compare their respective simulation results. The Kalman filter due to Darouach et
al. treats the enemy inputs as part of the extended state and obtains an estimate of both the state of
the two forces and the input of the enemy. But their filter is designed for linear time-invariant systems.
Hence, we present an extension of their filter to a nonlinear time-variant system.

The extended Kalman filter algorithm presented in this report is capable of estimating the states of
both forces in the presence of process noise as well as sensor noise. We note that the estimates of the
enemy inputs are too noisy to be directly useful. However, our game-theoretic controller requires only an

6

estimate of the enemy state and it does not require any estimates of the enemy input. We thus observed
the game-theoretic controller remained effective when the extended Kalman filter is introduced in the
loop.

Experiment 18: Method of Characteristics: Addendum

The purpose of Experiment 11 was to verify that the solution computed by the Sequential Linear-
Quadratic Method (SLQM) was the same as the Nash solution computed by the Method of Charac-
teristics. We verified that the solutions computed by the Sequential Linear-Quadratic Method (SLQM)
were indeed the same as the Nash solutions computed by the Method of Characteristics under several
scenarios. However, the experiments in Chapter 11 all involved one Blue unit against one Red unit. In
Experiment 18, we extend the results in Experiment 11 to a scenario of multi-units against multi-units.
Specifically, Experiment 18 tests the Method of Characteristics for the case of three blue units against
three red units.

Experiment 19: New Game Flow Models

Military operations can be viewed as a hierarchical structure in which actions are taken by individual
units at a low level, based on strategies developed by planners at a high level. In this experiment we
consider the situation in which two forces, say the blue and red forces, control a large number of units
distributed over a large geographical area. We develop a tool that is useful to high-level planners in
simulating and computing the optimal strategy for the two forces. We also report the results of our
numerical experiments.

The geographical area in our model is represented by an abstract game board that is divided into
cells so that the strength concentration of the blue (resp. red) force in a cell is defined as the number of
blue (resp. red) units contained in the cell divided by the area of the cell. The game is concurrent in the
sense that both the blue and red forces can move some or all of their respective units simultaneously and
continuously during the game.

We formulated the military operation control problem as a differential game over the abstract game
board. The differential game consists of a quadratic payoff function and a set of ordinary differential
equations describing the system dynamics of the unit distribution over the discritized geographical area
(the abstract game board).

In order to solve such a geographically distributed differential game, we developed a computer method
for finding a local Nash solution to the adversarial game. The optimum strategy for each team is found
using the iterative algorithm called Sequential Linear-Quadratic Method. Experimental results are also
presented that demonstrate the validity of this concept.

Chapter 1

Experiment 1: Combat Modeling
and Validation

1.1 Executive Summary

The purpose of this experiment is to validate the low-order ordinary differential equation (ODE) models,
which are derived to approximate the evolution of expected values in a more realistic hybrid-stochastic
model, called the Probabilistic Mission Dynamics Model (PMDM), under different assumptions for target
acquisition and target selection coordination.

The hypothesis is that the evolution of the expected values of the Markov chain {(MC) mission dynamics
can be approximated by a low-order ordinary differential equation (ODE) model, for a time period of
sufficient duration, when the control signals are generated in an open-loop setting.

This study first identifies four different sets of assumptions about target acquisition and target selection
coordination, which will be abbreviated as:

MARI (Acquisition Rate Independent) Uncoordinated target selection, independent target acquisition,
MARD (Acquisition Rate Dependent) Uncoordinated target selection, linear target acquisition,
MNWA (No Wrap-around) Coordinated target selection, without wrap-around,

MWWA (With Wrap-around) Coordinated target selection, with wrap-around.

Then, continuous-transition Markov chain (MC) models are developed under these assumptions. Using
the MC models, the probability distributions for the number of platforms and their exact expected values
n®,nf are calculated as a function of time. Next, approximate ODE models of the evolution of the
expected values are derived.

The trajectories of the ODE models (77,7#%) are compared with the exact outcomes (n%,7%) in
twelve experiments, summarized in the table below, which indicates the initial number of platforms and
the probability of kill for the Blue and Red units.

Scenarios Used In the Experiments

Scenario Types; N2 =8, P2 = 0.8
A NB =NR pB=PF
B NB =2N® pE=pf
C| NP =NE pB=2PF

The approximation quality of the ODE models is compared in the following table using the Ly norm:

9

L]0, 10}-Norm of Error Between Actual and Approximate Expected Values
Exp# | L | 2 [3 456 7] 8 [9]1w]u]ni
MARI MARD MNWA MWWA
|n® —aB|| | 0.14 | 0.37 | 0.01 || 0.06 | 0.03 | 0.02 || 1.35 | 5.80 | 0.02 || 1.53 | 4.74 | 0.16
[n®—a%| | 014 | 135 | 0.25 || 0.06 | 0.06 | 0.04 || 1.35 | 5.80 | 0.04 || 1.53 | 0.06 | 0.58
InB—%5 |028]1.72|026 | 012|009 | 0.06 || 2.70 | 11.60 | 0.06 || 3.06 | 4.80 | 0.74
+n" — ")

It was observed that the ODE models were good approximations under the uncoordinated target
selection assumption, and were found to be sufficient to represent the attrition dynamics in a differential
game setup in this case. The discrepancy between the MC and ODE models increase as the engagement
proceeds, which should be expected. Under the coordinated target selection assumption, the ODE ap-
proximations were worse. This can be partially explained by the fact that coordination implies firing in
rounds, and therefore platform loss is more discrete in nature.

1.2 Purpose of the Experiment

The purpose of this experiment is to validate the low-order ordinary differential equation (ODE) models,
which are derived to approximate the evolution of expected values in a more realistic hybrid-stochastic
model, called the Probabilistic Mission Dynamics Model (PMDM), under different assumptions for target
acquisition and target selection coordination.

1.3 Hypothesis to Prove or Disprove

The hypothesis is that the evolution of the expected values of the Markov chain (MC) mission dynamics
can be approximated by a low-order ordinary differential equation (ODE) model, for a time period of
sufficient duration, when the control signals are generated in an open-loop setting. For the closed-loop
situation, see Chapter 7.

1.4 Introduction

We consider a geographical area, a theater of air operations, in which two forces oppose each other and
try to accomplish their respective mutually conflicting air missions. For example, two forces may be
operating in an area, in which the ground force of one side tries to invade the other side while the air
force of the other side tries to stop the invasion.

Attrition dynamics are inherently probabilistic, yet most attrition models approximate the dynamics
with a deterministic system. This chapter shows the predictive capabilities of a probabilistic model
using Markov Chains, and illustrates different methods to approximate the probabilistic model with a
deterministic model.

In this chapter we study the combat between one Blue unit and one Red unit. Modeling multiple
units is more involved and may be the subject of future work. (A multi-unit model, based on heuristic
arguments, is included as an appendix to this chapter.) Each unit is homogeneous, that is, each unit
consists of only one type of platform equipped with the same type of weapons. Platforms can be SEADS,
ground troops, bombers, interceptors, etc. In the scenario we would have data consisting of such ideas as
the probability of destroying a targeted platform, firing intensities and speed controls. Firing intensity is
a control which the mission commander (controller) may change, in a dynamic game situation.

The model outcome is mainly concerned with the expected values of the number platforms for each
unit at the end of a mission. We have presented approximations to these expected values that are
deterministic ODE’s. Modeling has two different cases: uncoordinated target selection (any platform
that acquires a target may fire a weapon) and coordinated target selection (the unit commander controls

10

how the platforms target). We will see that some of these approximations are very good, and some are
not.

The chapter is organized as follows: a presentation of the general background to the model, a derivation
of the model for uncoordinated target selection, a derivation of the model for coordinated target selection,
the evolution of the expected number of platforms for both uncoordinated and coordinated cases with
their approximations, numerical experiments, and some ideas of what to do next. An abridged version
has been published as [1].

1.4.1 Notation

We will denote the quantities which belong to the forces Blue and Red with superscripts .# and Boaf
the symbols in an expression do not have superscripts, this is intended to mean that the expression is
valid for either force.

The assumptions which appear to be reasonable for the situation we are modeling will be preceded
by M. ... Simplifying assumptions, which are introduced for the sake of mathematical convenience, but
may not always hold, will be preceded with S.... Postulates, which we believe to reflect the “nature of
things”, and should be satisfied with rare exceptions, will be preceded with P. ...

1.5 Random Variables

The position of the units are £8 and €7, which are deterministic quantities. On the other hand, the
number of platforms will depend on chance occurrences. To capture this, define the random variables,
XB(t) 4l umber of platforms in the Blue unit at time t,
XR(t) ' humber of platforms in the Red unit at time ¢.

The initial values are known to be XZ(0) = NB, X®(0) = N®. At any given time, the commanders (or
controllers) can observe only the expected values, denoted by

() € EXB()),n"(t) < EXR(®)],n € [P, 0"T.

Each unit has a fire intensity control v € [0,1]. This can be interpreted as the frequency of firing a
weapon per target acquisition (i.e., the probability of firing, given a target is acquired).

After acquiring a target, a platform fires a salvo of s weapons (with probability v). This will decrease
the weapons load of this platform. Define the random variables,

wB(t) f humber of salvo loads per platform in the Blue unit at time ¢,

WE(t) number of salvo loads per platform in the Red unit at time ¢.

Again, at any given time, the commanders (or controllers) can observe only the expected values,
def def def
¢P() = EWE @] ¢ (1) = BWRE®),¢= [¢F, ¢
Therefore the fire intensity controls are deterministic quantities, v = v(t,£,n, ().
Consider the Blue unit firing on the Red unit. Let the probability of kill for each weapon, given it is

fired, be P{wkillB IﬁredB }. The probability of killing the target, with a salvo of s® weapons, given that
they are fired simultaneously, is

B Byys® .
PkB___P{kiuBlﬁredB}:{ (- (1= Pk fued)] i %iggig (1)

11

1.6 Uncoordinated Target Selection

Consider two (homogeneous) units of the opposing forces engaged in a battle, in which platforms of both
sides are shooting at each other simultaneously. During this engagement, each platform searches for an
enemy platform (in the sky, on the ground, etc.). When a platform is located in space, identified to be
an enemy and the weapon system is locked on to this platform, a target is said to be acquired. Target
acquisition is a stochastic process, in which events occurring on disjoint intervals of time are assumed to
be independent.

The following assumptions appear to be reasonable for air-to-air or air-to-ground combat with modern,
electronically guided weapon systems:

MNCO: Friendly platforms do not communicate for target selection (uncoordinated selection).
The exception is when a platform, which has depleted its supply of weapons, locates and identifies
a target. In that case, this platform will relay this information to a friendly platform in the same
unit which has weapons.

MPKD: The probability of killing the target depends on the distance between the units.

MNWT: The time it takes for missiles, bombs, and other weapons to reach the target is negligible.

From MPKD, (1.1) will depend on the distance between units, with a function ¥ : R — [0, 1] which
depends on the positions of each unit, 2 (]|[¢8 — £R|]). Therefore the probability of a platform killing its
target, given it is assigned to a target, is

P,ig ¥BuB ~ probability of a blue platform killing a red platform with one salvo,

PEyRUR ~ probability of a red platform killing a blue platform with one salvo.

There are two different situations for acquisition rate and self-attrition:

MARI: The target acquisition rate does not depend on the number of enemy platforms or their
distribution in space. (Search devices are advanced enough that they will locate enemy platforms
efficiently even when they are distributed sparsely.)

MNSA: Self-attrition or equipment breakdowns are negligible.
and

MARD: The target acquisition rate does depend on the number of enemy platforms.

MWSA: Self-attrition or equipment breakdowns are not negligible.
To satisfy both MARI and MARD, considering a Blue platform, define a function, o : N — R, as

1 m>of,
UB(m):{ 1 m<agB (1.2)

where of is the value at which the Blue platform’s acquisition rate saturates. If of = 1, we have an
acquisition rate that is independent of the number of enemy platforms (MLARI), otherwise there is linear
dependence on the number of enemy platforms (MARD), until saturation is reached.

Now, consider the Blue unit firing at the Red unit. Let of be the maximum rate a Blue platform
acquires a Red platform as a target. Given X2(t) = n and X£(t) = m, from MPKD with Equations
(1.1) and (1.2), the loss rate of Red platforms due to one Blue platform’s fire is

oB(m)AR, with AR & pByB(|¢® — eR|)a®WB.

From MNCO, the loss rate for the Red unit due to all platforms of the Blue unit is oZ{(m)A®(t)n. The
loss rate for the Blue unit is o (n)AP(t)m, from symmetry.

Next, when self-attrition is not negligible, MWSA | we may define an independent process describing
the self-attrition rate for a platform, 87 for the Blue unit platforms and §% for the Red unit platforms.
Then the self-attrition rate due to all platforms in the Blue unit is n8%, and the rate due to all platforms
in the Red unit is mB3%. When self-attrition is negligible, MNSA,, then 8 = 0.

12

1.6.1 Defining the Markov Chain
Under the previous assumptions, we can postulate a two-dimensional non-homogeneous continuous-time
Markov Chain for the platform dynamics, with state space {0,..., N} x {0,..., N*}, by specifying the
state transition probabilities from time ¢ to time ¢t + h, where h is small:
PDI: The number of losses in disjoint intervals are independent.
PKB: P{exactly one Blue killed} =
P{XBt+h)=n—-1,XB{t+h) =m| XB(t) =n, XF({t)=m} =
(ma®(n)AB(t) + nBP)h + o(h)
PKR: P{exactly one Red killed} =
P{XBt+h)=nXBt+h)=m—-1]| XB(t)=n,XR(t)=m} =
(na® (m)AR(t) + mBR)h + o(h)
PMD: P{two or more deaths} =
olh) n+m>2
0 otherwise

PRE: P{resurrection} =

P{XBt+h)>nUXRt+h)>m| XB(t)=n,XR(t)=m}=0

PND: It follows that P{no death} =

P{XBt+h) =nXRt+h)=m| XB#) =n XR(t)=m} =
1 — (ma® ()AL (t) + nB? + naB(m)AE(t) + mBHYh + o(h).

Using the standard notation

def

M,m(t) F P{XB(t) = n, X(t) = m}, (1.3)

the evolution of state probabilities are described by

() = = (mo(RAP + BB +noB(m)AE + mBH),

dt
(maf(n + DA + (n + 1)BP)s1m

+
+ moBm+ AR+ (m+ 1), s

where the time arguments have been dropped for brevity. If we stack all components of II,, ,, into a row
vector IT, with (N2 +1)(N® + 1) elements, the above differential equation (1.4) can be written

d
ST(E) = T(HR() (14)
where () is called the transition rate matrix or the infinitesimal generator of the process.

13

1.7 Coordinated Target Selection

In this case, one can no longer talk about a target acquisition process. In order to decide which enemy
platforms will be a target, the unit commander will need to know the number and type of platforms
in the enemy unit. Target selection coordination implies less independence for each platform. Now the
platform commanders are only executing strict orders, or what their training dictates, when their unit
engages an enemy unit.

Coordination also implies that target selection takes place in rounds, from the unit commander’s
perspective.

MWCO At the beginnning of each round the unit commander assigns each of his platforms an
enemy platform as a target. During the round firing takes place, and platforms may be killed on
both sides. Then the unit commander assigns targets for the next round.

There are two different situations:

MRTI: The inter-arrival time between rounds (round length) is independent of the number of
platforms, and independent of the previous round length. Both sides fire simultaneously.

MRTK: A new round begins only when a friendly or enemy platform is killed.

MRTI is appropriate for artillery duels, for bombers versus ground troops or bombers versus air defense.
MRTK may be appropriate for air-to-air combat. In both cases, the round length is the same for both
Blue and Red. We focus only on MRTT in this report.

There are two situations for target selection: with wrap-around and without wrap-around;

MNWA: (No wrap around) At the beginning of a round, each platform is assigned to a unique
target. If there are more platforms than targets, the remaining platforms do not participate in the
firing (although they may be targeted by the enemy).

MWWA: (With wrap around) At the beginning of a round, each platform is assigned to a unique
target, until all platforms have assignments. If there are more platforms than targets, the end of
the target list wraps around to the beginning.

As in the uncoordinated case we have,

PEyBuB ~ probability of a blue platform killing a red platform with one salvo,
P,cnz/)RuR ~ probability of a red platform killing a blue platform with one salvo.

The time between rounds is needed for the platforms to reload their weapons, for bombers to turn
back, for determination of losses and kills, and for decision making for the assignments. From MRTI,
arrival of rounds is a Poisson process with parameter p (which may depend on the unit category).

1.7.1 Case 1 : Independent Round Arrival, No Wrap-Around

Suppose a round occurs in (¢,t + k). Given XZ(t) = n and X%(t) = m, there will be min(n, m) target
assignments on each side, and min (n,m)r shots will be taken. Consider the number of losses on the
Red side. Since each round of shots taken is independent, this can be regarded as a Bernoulli trial with
probability of success, PEyPvB. Thus the probability that Red will lose k platforms, given the round
started at time ¢, is

GR(n,m,k,t) Y P{XR(t+h)=m—k |XB(t) =n, X®(t) = m, one round in (t,t + h}}
- (mln(:,m)) (PkaBUB)k(l _ P“I:B‘wBVB)min(n,m)—-k. (15)

14

Note that this is valid only when k < min(n,m), so one should define

a \ def Wf},;)ﬁ a>b,
b 0 a<b.

Similarly for Blue losing [platforms, given the round started at time ¢,

GB(n,m,1,t) ' P{XB(t+h)=n—1|XB(t)=n,X%(t) =m, one round in (t,t + h|}
_ (min(n, m)

\ {

Since both sides fire simultaneously, the number of losses on one side is independent of the number of
losses on the other side. Thus for (I, k) # (0,0)

) (PliinVR)l(l _ PkaRVR)min(n,m)-l. (1.6)

P{XBt+h)y=n—-L,XBt+h)=m—k IXB(t) = n, XR(t) = m, one round in (t,t + hl} =
GEB(n,m,1,t)GR(n,m, k,t).

1.7.2 Case 2 : Independent Round Arrival, With Wrap-Around

Suppose a round occurs in (¢t + h]. Given XB(t) = n and X®(t) = m. The minimum number of
platforms assigned to fire at a Red platform by the Blue unit is

fB: L%J, m>0,
0, m = 0,

where |] is the truncation function. Out of the n Blue platforms, m fB of them will be assigned regularly,
and
nmodm=n—mf?

of them will be assigned as extras(the wrap-around). Then n — mf? Red platforms will receive f B
shots and m(f2Z +1) — n Red platforms will receive f B shots, given that all Blue platforms choose to fire.

The number of Red losses, given a round in (£, ¢ + h, is the sum of Red losses in the group which
receive fB shots, plus the Red losses in the group which receive fEB + 1 shots. The ‘fB’ group has

m{fB4+1)—n def bo Bernoulli trials, each with probability of success
By 41— (1 - PByBuB)f”.

The ‘fB 4+ 1’ group has n — mfB df §, Bernoulli trials, each with probability of success
By %1 (1- PPyBuB) "

Thus the probability that Red will lose k platforms given the round started at time ¢ is,

GR(n,m, k,t) & P{XR(t+h) =m—k |XB(t) = n, X®(t) = m, one round in (t,t+ h]} =
o (%) o moenn (1) BB £ 0

. (1.7)
(%) @ra-sy £5 =0

A similar argument holds for Blue to find GEB(n,m,l,t). Since both sides fire simultaneously, the number

of losses on one side is independent of the number of losses on the other side. Thus with (I,k) # (0,0),

P{XBt+h)=n—, X" (t+h)=m—k |XB(t) = n, X®(t) = m, one round in (¢, + h]} =
GB(n,m,l,t)GR(n,m,k,t).

1.7.3 Defining the Markov Chain

First set F(I, k,n,m,t) = GB(n,m,1,t)GE(n,m, k,t), where GB(n,m,1,t) and G®(n,m, k,t) are defined
in Equations (1.5), (1.6) and (1.7) for both cascs. Under the previous assumptions, we can postulate a
two-dimensional non-homogeneous continuous-time Markov chain for the platform dynamics, with state
space {0,..., N8} x{0,..., N®}, by specifying the state transition probabilities from time ¢ to time ¢+,
where h is small:

PDI: The number of losses in disjoint intervals are independent.
PKBR: (I,k) # (0,0)
P{XB(t+h)y=n-LXBt+h)=m—k| XB(t)=n, X)) =m} =
E(l, k,n,m,t)(ph + o(h))
PND: (I,k) = (0,0)

P{XB(t+h)=n,X(t+h)=m]| XB(t) =n, XB(t) =m} =
(1 = ph + o(h)) + F(0,0,n, m,t)(ph + o(h))
+ P{losing | and k in 2 or more rounds} P{2 or more rounds occur}

o(h)

Using the standard notation (1.3), the evolution of the state probabilities are described by

+ Y Flkn+lm+k)pymek
(1,k)#(0,0)

where the time arguments have been dropped for brevity. If we stack all components of II, ,, into a row
vector II, with (NB + 1)(N® + 1) elements, we have Equation (1.4).

1.8 Evolution of Expected Values

1.8.1 Uncoordinated Target Selection
Independent Target Acquisition (MNCO, MARIJ)

With independent target acquisition, we have o = 1. Under this assumption we may write the evolution
of the expected number of Blue platforms as

NB NR

d
- O all, m(t)

n=0m=0

77 (1)

i

NR

= AP+ AP ()) milom(2). (1.9)

ma=]
Similarly, the evolution of the expected number of Red platforms is

NB NR

W) = %Z > mllym(t)

n=0m=0
NB
= =R () + A1) Y nlluo(t). (1.10)

n=l

16

A way of developing an approximation of the expected values is to drop the extra terms in (1.9) and

(1.10). This will give us a deterministic ODE approximating the expected value of platforms,
P = —aRplyRufa?, 1.11

Al = —aPPEyBuBAB. (1.12)

Dependent Target Acquisition (MNCO, MARD)
Consider a short interval, [¢,t + At]. We then may assume that the number of Blue losses in the interval
is approximated by

1
maR(n)AB = ReR(AP)ABAL = AFaP AP At
0
Then we may approximate

. . .p.g 1
A8 (t+ At) =75 (t) - (TIRWBU—R/\BAi),
0
and by taking the proper limit as At — 0, we get
AB = —3B5 Ra PRwR R S (113)

Similarly we have

SR __oR

=5

BQB B, B B
06

1.8.2 Coordinated Target Selection
No Wrap-Around (MWCO, MRTI, MNWA)
In each round, both sides have min(nB, n*!) expected shots, so we would expect Red to lose

mln(nB R)PB'(/)B B

and expect Blue to lose

min(n®,n™) PiyRuR,
in each round. In a short interval, At, the expected number of rounds is pAt. Assuming that during these
rounds n® and 7% do not change much (this assumption will not necessarily hold), we may approximate

AP (t + At) = 7P () — pAtmin(7®, 7% Py,

Then by taking the proper limit as At — 0, we obtain the evolution equation for the expected number
of Blue platforms,
7 (t) = —pmin(7®, 7" PpFut.

If it is desired to replace min (n®,7n%®) by a smooth function, one possibility is to use

B R R
mm(sz) = mm(1) ~1l-e Z%F
n 77
Then we obtain R
75 (t) = —p® [1 —e 2#’“} PiyRUR, (1.15)

Similarly, by symmetry, we have
A B
it () = —pi®t {1 —e % } PByBLB, (1.16)

However, it was observed that this replacement results in poor approximations when one force has nu-
merical superiority.

17

With Wrap-Around (MNCO, MRTI, MWWA)

Consider the Blue unit firing on the Red unit. The average number of shots Red will receive per platform

is X. In each round, the expected Red loss is the sum of the expected loses in the ‘fB’ and ‘f% + 1°

groups, which is
(£ +1) =)1 — (1= PEYPLEY ") 4 fn — myP)1 — (1 — PByBuB) "+

Approximating f® by 2 (the average number of shots Red will receive), the above equation simplifies to
m{l — (1 — PByBuB)=]. Following the same logic as in the first case, we obtain

aB
(0 = i 1= (- PPYPE] (117)
Similarly, by symmetry, we have

) = i |1- 01— PR . (118)

1.8.3 Summary of ODE’s

Table 1.1 summarizes the ODE’s for approximating the expected value of platforms for each model.

Table 1.1: The Approximate Evolution of Expected Number of Platforms

Case Approximate Expected Value ODE’s
Uncoordinated(MARI) 7P = —iRPRyRyRR
Uncoordinated(MARD) 7B = —ABpReg PRyR,R

%0

Coordinated(MNWA) | - 7% = —p/® min (48, 47) PRy Ry R

i AR
Coordinated MWWA) | #8 = —piB [1— (1 - P,fzp’*u“)ﬂ

1.9 Weapons Expenditure

When a platform with a large number of weapons is shot down, the salvo loads per platform W (t) will
decrease faster, compared to the case when a platform with less weapons is shot down. Therefore, for
an exact prediction of the probability distribution of W (t) one needs to develop a Markov chain model
for the number of weapons in each platform individually, and then calculate the distribution of W(t)
from these. This is not only computationally very costly, but also only marginally useful for the overall
project objective of developing a game theoretic controller. This is because W (t) does not enter the cost
function, and it becomes significant, per (1.1), only when a unit depletes all of its weapons. Considering
this, we will take a shortcut by introducing the following simplifying assumption:

SWES: Since the target acquisition or round arrival rate, the fire intensity controls and the salvo
sizes are the same for all platforms in a unit, all platforms will be assumed to have the same number
of weapons on board at any given time.

Because of SWES, when a platform is killed, W (t) does not change. The salvo loads per platform of
the unit obey, for small At

W (t + h) — W(t) = number of salvos fired in [t,t + At]. (1.19)

18

1.9.1 Uncoordinated Target Selection

For both the independent target acquisition case (MNCO,MARI), and the linearly dependent case
(MNCO,MARD), the firing rate for a Blue platform will be o2(X®)a®v?. The expected number of
salvos fired per Blue platform in [t,¢ + A#] will be o (n®)aBvP At. Taking expected values in (1.19),
dividing by At and taking the limit At — 0 yields

(B (1) = —o® (n™(t)) &Pv P (1) (1.20)

A similar equation holds for the Red unit.

1.9.2 Coordinated Target Selection

For the case without wrap-around (MWCO,MRTI,MNWA), the assumption SWES may not hold
for a few rounds. In the long run, if the platforms which are selected to fire on the enemy are rotated
regularly between rounds, one can still employ this assumption. In that case, the Blue unit will fire, on

average,
so(oB R R
mlIl(TIBaTI) I/B = min (?7_3_] 1) I/B
n Uj
shots per platform, in each round. Then, the weapons dynamics will be

. R
¢B(t) = —p min (ZBigl) vB(t). (1.21)

For the case with wrap-around (MWCO,MRTI,MWWA), the SWES is more reasonable. Since
all Blue platforms will have target assignments, the expected number of shots per platform in the unit is
v, per round. Therefore the weapons dynamics are

EB(t) = —pvB(1). (1.22)

1.10 Experiment Results and Analysis

Table 1.2: Scenarios Used For Experiments

Scenario Types; N2 =8, P = 0.8
A| NB=NR pB=pF
B| NB=2NR PB=PpF
c| NB=NF pBE=2pF

To compare each of the models we simulate each of the above scenarios. We note that each model
shows the principle of force concentration. That is,

e When both forces have equal loss rates and equal number of platforms, the dynamics for each force
are exactly equal,

e When one force dominates in numbers over the other force, the dominating force has fewer casualties.

There are three types of scenarios that are summarized in Table 1.2. For both uncoordinated and
coordinated target selection, we use 1 = 1 (the units do not move) and v = 1 (the units always fire at
an acquired target). Also, for MINCO we have a = 0.1 and for MWCO we have p = 0.5. Under the

19

MARD assumption for uncoordinated target selection, the acquisition rate has a linear dependence on
the number of enemy platforms. That is,

0(1)3 = NT and 05 = NB.

Also, we assume that there are enough weapons on each platform to last through the simulation. We do
not worry about weapon expenditure for these experiments.

To compare the models, we must first understand how each model behaves in a realistic battlefield
(with our given scenario).

Uncoordinated (MARI) Independent acquisition rate implies o = 1. Whenever a platform
acquires a target, the platform will fire one salvo at the target with a probability of kill, Py.
Whenever a target is destroyed, the platform will reacquire a new target. This will go on until the
simulation ends, or until the platform is destroyed.

Uncoordinated (MARD) The dynamics are the same as MARI except for how a platform
acquires a target. That is, 0®(m) = % and o®(n) = &, where m is the number of Red
platforms and n is the number of Blue platforms at some time t. When targets are sparse, the
acquisition rate is smailler.

Coordinated (MINWA) At the beginning of each round, the maximum number of platforms
targeted by the enemy is equal to the number of platforms in the smallest unit. For our scenarios,
there will be min (N2, N®) Red targets for Blue and min (N, N®) Blue targets for Red when the
simulation begins. When a round begins, both sides fire simultaneously.

Coordinated (MWWA) For the simulation we have targeting as defined in Section 1.7.2. The
commander will assign unique targets for each his platforms until all targets have been targeted,
then the remaining platforms will start targeting from the beginning of the list of targets until all
platforms have an enemy target. When a round begins, both sides fire simultaneously.

Figures 1.1, 1.3 and 1.5 give the plots of the probability distribution of certain simulation times
for Uncoordinated Target Selection. In each scenario we can see that the probability distribution for
MARD cases show lower covariances over the simulation then the MARI cases. This is expected since
the independent acquisition rate case allows for more acquisitions per unit time then the dependent case
when targets become sparse.

Next we shift our attention to the coordinated target selection models. From Figures 1.2, 1.4 and 1.6
wee see less variation in the distribution for MW WA cases than in the MINWA cases. By understanding
the differences between the models we can see why this happens. Since the ‘wrap-around’ case allows for
targets to be selected by more than one enemy platform, we can understand that the dominating force
will obtain better chances of winning than the weaker force. With ‘no wrap-around’, the force that wins
is the force with better probabilities of killing the enemy target.

There are definite differences between the distributions of uncoordinated and coordinated target se-
lection models. In the uncoordinated target selection case, at any given time, only one platform can be
destroyed. On the other hand, in the coordinated target selection model, after a round, a whole unit has
a non-zerc probability of being destroyed.

After seeing how the probability distribution evolves for each model, we need to examine the expected
values of the number of platforms for both sides and compare them with the approximated expected
values. We want to examine how much of an outlook of the battle dynamics we can see with the
approximated expected values. The derivation of the approximate expected values does not guarantee
any reliable prediction over a long horizon.

Tables 1.3 and 1.4 summarize the covariances and the approximation error in the expected values
using the L, norm for the duration of the engagement, for all models and scenarios.

In Figures 1.7-1.12 we have the expected values (with covariances) for the uncoordinated target
selection case. There are, of course, small differences in the exact values from MARI to MARD. Yet
we see that the approximation for MARD is much better since it has an overall better prediction of

20

Time =0

of Biue Platforms.

Prababiiity for sach Color

(b)

of Blue Platforms.
@ =

[

[

Figure 1.1: Evolution of the probability distribution for Uncoordinated Target Selection for Scenario

A((a)MARI and (b):MARD).

Prabsbiity for each Cator

of Biue Platiorms

Tima=0

@

o

of Blue Platforms.
-

Time = 4

(b)

Figure 1.2: Evolution of the probability distribution for Coordinated Target Selection for Scenario A(

(a):No Wrap-Around and (b):Wrap-Around)

21

Time =0 Time =4 Thoa =0 Time =4

09

)

08

[:34

of Biva Plaforms.
-

e
E
2
H
4
3
B
B
=

~

06

°
o

Probabiiity for each Color
©
>

02

(a) (b)

Figure 1.3: Evolution of the probability distribution for Uncoordinated Target Selection for Scenario
B((a)MARI and (b):MARD).

Time=0 Time = 4 Tima=0

@

of Bive Piatforms
>

N

of Blue Platforms

[2 4
¥ of Red Platiorms

(a) (b)

Figure 1.4: Evolution of the probability distribution for Coordinated Target Selection for Scenario B(
(a):No Wrap-Around and (b):Wrap-Around)

22

et e g s

Time =0 Tine =4 Yims =0

of Blue Platforms.
N s o
of Biua Piatiorms
o P o

o
>

Probability for each Color

0 8

2 4 6
of Red Platforms.

(a) (b)

Figure 1.5: Evolution of the probability distribution for Uncoordinated Target Selection for Scenario
C((a):MARI and (b):MARD).

Time =0 Tima = 4 Time=0 Tima=4

of Biue Platforms
> @ @

N

Probability for each Coloc

2
‘§
2
g
5
H

o 4 B8 8

2
of Red Pratforms.

(a) (b)

Figure 1.6: Evolution of the probability distribution for Coordinated Target Selection for Scenario C(
(a):No Wrap-Around and (b):Wrap-Around)

23

Table 1.3: Ly-Norm of Covariances

Exp. # 1 2 3 4 5 6 7 8 9 10 11 12
MARI MARD MNWA MWWA
Scenario A B C A B C A B C A B C

oB? 10.16 | 4.09 | 4.90 |} 5.33 | 3.19 | 3.46 || 20.83 | 8.79 | 10.54 || 19.18 | 5.31 | 10.16
oR? 10.16 | 3.85 | 9.81 || 5.33 | 2.80 | 5.26 || 20.83 | 8.36 | 21.67 | 19.18 | 5.79 | 20.12
oBgh 582 11651293 12091051130 1842 | 7.70 | 10.15 || 16.80 | 4.74 | 9.28

Table 1.4: Ly-Norm of Error Between Actual and Approximate Expected Values

Exp. # 1] 2 | 3 4 5 | 6 7 8 9 10 | 11| 12
MARI MARD MNWA MWWA
ln® — 43| | 0.14 | 0.37 | 0.01 || 0.06 | 0.03 | 0.02 || 1.35 | 5.80 | 0.02 || 1.53 | 4.74 | 0.16
In®—#7R| | 0.14 | 1.35 | 0.25 || 0.06 | 0.06 | 0.04 || 1.35 | 5.80 | 0.04 || 1.53 | 0.06 | 0.58
In® —7% | 0.28 | 1.72 | 0.26 || 0.12 | 0.09 | 0.06 || 2.70 | 11.60 | 0.06 || 3.06 | 4.80 | 0.74
+n% — 7%

the outcome over the simulation. It should be noted that the approximation is not necessarily always
this good, yet over other simulations, the approximation for MARD is better than MAARI. A reason
for this can be associated with the acquisition rate. In the MARI case, platforms acquire targets at a
constant rate independent of the number of enemy platforms. In the MARD case, platforms acquire
targets at rate dependent on the number of enemy platforms. This means as targets become more sparse,
the dynamics of the dependent case will “slow down”. That is, the amount of targets being acquired will
decrease as the targets become more sparse. This allows for an approximation to remain good as targets
become more sparse.

Lastly, Figures 1.13-1.18 illustrate the expected values (with covariances) for the coordinated target
selection case. Here we do not see much difference between the actual expected values, yet one notable
difference is in the covariances. The covariances for the ‘wrap-around’ case are smaller at the end of
the simulation time then the ‘no wrap-around’ case. We notice through other simulations, that over a
significant amount of simulation time the ‘wrap-around’ case has better covariances.

1.11 Conclusions and Recommendations

These results indicate that, the ODE models were good approximations under the uncoordinated target
selection assumption, and were found to be sufficient to represent the attrition dynamics in a differential
game setup in this case. The discrepancy between the MC and ODE models increase as the engagement
proceeds, which should be expected. Under the coordinated target selection assumption, the ODE ap-
proximations were worse. This can be partially explained by the fact that coordination implies firing in
rounds, and therefore platform loss is more discrete in nature.

An extension of the above modeling procedure to forces with multiple units is not immediate. There
are at least two issues that need to be addressed:

24

e A unit may engage in a firefight with more than one enemy unit at a given time. In this case, the
fire intensity command for this unit must be replaced by a vector of commands, with length equal
to the number of enemy units. From a modeling perspective this may be acceptable. However, this
“proliferation of inputs” is quite undesirable for control design.

o The state-space of the resulting Markov Chain will grow geometrically with the number of units.
As a result, verification of approximation of expected values via simulation may become infeasible.

A multi-unit model, based on heuristic arguments, is included as an appendix to this chapter.

As mentioned in Section 1.7, round arrival may depend on platform loss (MWCO, MRTK). In this
case, one needs to consider a random variable for the time it takes one platform to kill its assigned target.
In most cases, the distribution of this variable will not be exponential and the resulting stochastic process
may not be a Markov Chain. Further investigation of this topic, with several likely distributions for the
kill time, would be interesting.

It is also of interest to model attrition when fighting units have different rules about target selection
and coordination. For instance, the platforms of one unit may be coordinated (and hence will fire in
rounds), while the platforms of the enemy unit are uncoordinated (and hence will fire continuously as
targets are acquired).

Another research direction would be to develop better approximations for the expected values by
employing model reduction tools, such as singular perturbation analysis or principal component analysis.
Whether more sophisticated mathematics will result in better overall predictive capability will, no doubt,
depend on the nature of assumptions involved.

25

) L L 2 . 4

Time (min)

8 T T T T T T T T

Expectation (Red}
!
/

o : L 2 i 1 L I L L
o} 1 2 3 4 5 6 7 8 9 10
Time (min)

14 T T T T T T T T

10

Covariance

Time (min)

Figure 1.7: Evolution of the expected values (actual and approximated) and covariances for Uncoordi-
nated Target Selection (MARI, Experiment 1.1)

26

e

I

o L n L L : L
5
Time (min)

8 T T ¥ T T T

Expectation (Red)

5
Time (min)

14 T T T T

Covariance

-4 L s it L 4

a.aQq

5
Time (min)

Figure 1.8: Evolution of the expected values (actual and approximated) and covariances for Uncoordi-

nated Target Selection (MARI, Experiment 1.2)

27

Expecation (Red)

Cavariance

Figure 1.9: Evolution of the expected values {actual and approximated) and covariances for Uncoordi-

5
Time {min)

nated Target Selection (MARI, Experiment 1.3)

28

— T 7 v T Y =
T e e g
T - napprox
Fas — 4
T T
—
6l e
S -
4} -
3F N
2 -4
1 .
1 L t . s
00 1 7 8 9 10
Time (min)
a T T T T T =
e
= Tepprox.
7 -4
(-3]
5 4
4t ~ e
3p T]
2 o
1 -
o L L 1 s L s
0 1 (=3 7 8 9 10
Time {(min)
14 T T T T T 1
e Og
o o
5 R
12 e Sn
10+ =
8l
6 -
e e
4l ////]
e
2+ / e]
e
. -

o P_,.,—_,.’:”'/:"‘/M B
—2 -
-4 : L L L s L

(o] 1 6 7 8 9 10

B T T . T . T " S
~ s

- qapprox

AL \ s |
e —
6l -~ :\\\\‘\ N
N \\

3 o T .

@ o \

=2 -

=R ~ . B

= T~ —

2 4t - .

% 4
3 —
2 -
1+ =
) s 1 ' L s . . L "

o} 1 2 3 4 8 7 8 9 10
Time (min)
8 T T T T T T T T
— ™
had Y‘a;;pron
7 T .
= ~ \\
6 -~ 1

3 - \
@© To-
= I
S a4k T ~
o —
k<1 -
8
2
w
3 .
2+ —
1 ~
o ; L L 1 . s . L)
o 1 2 3 a s 6 7 8 9 10
Time (min)
14 v T T ¥ v Y T T I
J— OB
Lo JEgN. §
R
12t e
10 4
8+ |
3 6} N
2
s
2
e
8 ap -
2L e
PEES
-/'/

o i
-2r i
4) . . . L

o 1 2 3 4 5 6 7 8 =] 10 -

Time (min)

Figure 1.10: Evolution of the expected values (actual and approximated) and covariances for Uncoordi-
nated Target Selection (MARD, Experiment 1.4)

29

o f L L L L
Time (min)

a T T ¥ T ¥

Expectation (Red)
-y

Time (min)

14 T T T T T

Covariance

[
DND DN
]

2

Time (min)

Figure 1.11: Evolution of the expected values (actual and approximated) and covariances for Uncoordi-

nated Target Selection (MAARD, Experiment 1.5)

30

10

-)
- n
— i

- approx
— T lepp

o §) X L ¢

Time {(min)

8 T T ; T T T v ! -
nR
- m

approx

Expectation (Red)

o L 2 1 L '

5
Time (min)

14 T T T ¥ T ¥ T T

10 B

=3
T
1

Covariance
F-3

T

L

1 i

4) 1

Time (min)

Figure 1.12: Evolution of the expected values (actual and approximated) and covariances for Uncoordi-
nated Target Selection (MARD, Experiment 1.6)

31

5
Time (min)

8 T T T T ¥ T T 1 - —
MR
- “ZPDI’O)(
T —~
6

Expectation (Red)

3l N R
~
~
~
2 ~ -
~
~
1 =~ \\\ i
o 1 L A n L L : L T e
[s] 1 2 3 4 5 7 8 9 10
Time (min)
14 T T T v y v T T —
— g
o, o
R
-
-2
s
Q
3 R
——
\ -
\"—-s—.-
2}
-4 . s L s) L L " L
o 1 2 3 4 5 8 7 a8 g 10

Figure 1.13: Evolution of the expected values (actual and approximated) and covariances for Coordinated

Target Selection (MNWA, Experiment 1.7)

Thme (min)

32

8 ¥ T p——
N \\;\\' T v ¥ T ¥ e nB
~ —— a8
~ Te— nappn)x
7L N —— e 2P
~ T
~ S
6| . T]
~
~
5 R .
) -
2 - -
@ e e
S T - - - —
S 4r - o
%
3t E
2 .
1k 4
o L L . . 2
o 1 2 3 4 7 8) 10
Time (min)
8 T T v v v T 7 = t
o
= Tapprox
7 i
6} .

Time {min)

14 T T T ¥ T T T T X

Covariance

g b s r)

ak

5
Time (min)

Figure 1.14: Evolution of the expected values (actual and approximated) and covariances for Coordinated
Target Selection (MNWA, Experiment 1.8)

33

o I 1 " " A L 1 2 L

5
Time (min)

8 T T T T T T T v

Expectation (Red)

o 1 L 1 n " L L " X

Time (min)

14 T T T ¥ T T ¥ T T

Covariance

- e -

:

-4 L

Time (min)

Figure 1.15: Evolution of the expected values (actual and approximated) and covariances for Coordinated
Target Selection (MNWA, Experiment 1.9)

34

approx

5
Time (min)

8 T T T T ¥ T T T %
Nr

— Mapprox

» o
T T
&
' I}

Expectation (Red)

w
T
1

Time (min)

14 T ¥ T T T T T ¥

Covariance

-2k -

-4 s L L 1 i L
0o 1 2 3 4 5 6 7 8 9 10
Time (min)

Figure 1.16: Evolution of the expected values (actual and approximated) and covariances for Coordinated
Target Selection (MW WA, Experiment 1.10)

35

Expectation (Blue)
/
/
i

o . s L L I it L L 2

Time (min)

8 Y T T ¥ T ¥ T 4

Expectation (Red)

Time (min)

14 T y T T T T ¥ T T

10+ B

Covariance

~2 |]

-4 3 4 : t L
o 1 2 3 4 5 [7 8 9 10
Time (min)

Figure 1.17: Evolution of the expected values (actual and approximated) and covariances for Coordinated
Target Selection (MW WA, Experiment 1.11)

36

B
T ¥ T T T T T T e
Tig
'_"approx
71
33 A B
B
=
=
.
.5 e R
E] e
m TR
= B,
= o]
§4~ |
9]
3r m
2 -
1
o L " 1 L L L i s 1
s} 1 2 3 4 5 7 8 9 10
Time (min)
8 T T T T T ¥ T v =
N
- "uppmn
7 -
6 4
A
5 A B
E=3 \
a3
[~ N
[AN
24 N B
§ ~
> A
@l N
~
~
~
2 ~ -
~
~
~
~
15 . b
-
0 L I} i 1 i I 1 1 At et R=)
o 1 2 3 4 7 8 9 10
Time {min})
14 T ¥ T T T T t T I
3
2
s
e
B
S
—a2 B
-4 L L L 2 L L :) L
0 1 2 3 (&) 7 8 9 10

5
Time (min)

Figure 1.18: Evolution of the expected values (actual and approximated) and covariances for Coordinated
Target Selection (MWWA, Experiment 1.12)

37

o

Expectation (Blue)
IS

w

o \ : 1 L £ L

Ty
n
n

(rin)
(oxp)

approx

2]
approx

5
Time (min)

8 T T T T T T

Expectation (Red)

o) i : X t

¥ X
Lid

hi)
n
n

{min)
(oxp) ||

Bapprox

approx

Time (min)

Figure 1,19:' Comparison of Expected Values for Experiment 1.8 with approximated ODE’s using
~B

min (72,7%) and e

38

1.12 Appendix: Mission Dynamics Continuous-Time Model 3.0

1.12.1 Modeling Assumptions

This section describes the Mission Dynamics Continuous-time Model version 3.0, (MDCM 3.0), which
is a multi-unit extension of the ODE model which approximates the expected values of the number of
platforms, for the uncoordinated target selection, independent acquisition rate case.

As usual, we will denote the quantities which belong to the forces Blue and Red with superscripts
B and .E. If the symbols in an expression do not have superscripts, this is intended to mean that the
expression is valid for either force.

Consider two (homogeneous) units of the opposing forces engaged in a fire fight, in which platforms
of both sides are shooting at each other simultaneously. During this engagement, each platform searches
for an enemy platform (in the sky, on the ground, etc.). When a platform is located in space, identified
to be an enemy and the weapon system is locked on to this platform, a target is said to be acquired.

The state variables for each unit are its position £ € R?, the expected value of the number of platforms
in the unit 7 > 0 and the expected value of the number of salvo loads of weapons per platform ¢ > 0.

In addition to the speed controls p € [~1,1]2, each unit has a fire intensity control = € [0,1]. One
interpretation is as follows: Suppose an object is located and identified as a target by our detection
device. This may be a false detection due to the enemy’s electronic warfare or the object may in fact
be a decoy. Then 7 reflects the mission commander’s confidence in the detection device under the given
circumstances and allows provident use of weapons. In this way, 7 becomes the frequency of firing a salvo
per target acquisition (i.e., the probability of firing, given a target is acquired).

Consider the Blue unit firing on the Red unit. Let the probability of kill for each weapon, given it
is fired, be P {WkillB [ﬁredB}. The probability of killing the target, with a salvo of s¥ weapons, given

that they are fired simultaneously, is

B Bl\sB .
o d:efp{kmB[ﬁredB}:{[l—u—P{wkln | ired® })**] i B () >0, (1.23)
0 if (B(t) =0.

The following were assumed to hold when deriving the Markov chain model in [1]:

MNCO (No COordination) Friendly platforms do not communicate for target selection (uncoor-
dinated selection). The exception is when a platform, which has depleted its supply of weapons,
locates and identifies a target. In that case, this platform will relay this information to a friendly
platform in the same unit which still has weapons.

MARI (Acquisition Rate Independent): Target acquisition rate does not depend on the number
of enemy platforms or their distribution in space. (Search devices are advanced enough that they
will locate enemy platforms efficiently even when they are distributed sparsely.)

MPKD (Probability of Kill depends on Distance) Probability of killing the target depends on the
distance between the units.

MNWT (Negligible Weapon reach Time) The time it takes for a missile, bomb, or other weapon
to reach its target is negligible.

MNSA (No Self-Attrition): Self-attrition or equipment breakdowns are negligible.

From MPKD, (1.23) will depend on the distance between units, with a function ¢ : R — [0, 1] which
depends on the positions of each unit, /2 (|65 — £7||). Let us take this function as ¥{r) = exp(—(r/rp)?),
where 1y is a parameter which depends on the type of units. Therefore the probability of a platform
killing its target, given it is assigned to a target, is Pym.

39

1.12.2 State Equations

Although the models in [1] were derived for a one-on-onc engagement, we will assume that extension to
multiple unit case can be obtained simply by considering multiple, simultaneous, independent one-on-one
engagements. As usual, we will use subscripts to index units. The first subscript indicates the “shooter”
and the second one indicates the “shootee”. The maximum speeds for unit 4, in both x and y directions
is ;. Denote by p;; the rate at which a platform in unit i acquires a platform in unit j as a target.
We include the possibility that a unit may fire at more than one enemy unit, and it may be fired upon
by more than one enemy unit at the same time. However, these target assignments are fixed during
the mission. The indices of the Red units that Blue unit ¢ is shooting at (“the shootees of Blue ¢”) are
denoted by f2(i). Thus, the firing intensity control for this Blue unit has | f2(i)| components, where | - |
denotes the cardinality of a set. The k*" component of the firing intensity of Blue unit 4, 5 € [0,1],
corresponds to its fire against the j*" Red unit, in which j is the k*" element of fZ(i). The indices of the
Red units which are shooting at Blue unit i (“the shooters against Blue i”) are denoted by fZ(3).

Here, only the dynamics for Blue unit 7 will be displayed. The corresponding equations for a Red unit
can be obtained using the symmetry between the forces, by interchanging B with R. The motion on the
plane is given by

d
SR = aPuB(), (1:24)
d
SR = aPub). (1.25)
The platform loss evolves as
d
== > mr Pl (167 ® - O i), (1.26)
JEFE@)

where 7 is the k** element of f/(j). The weapon expenditure is given by
8

a 172 @)
@O == sien (n7'(1) pEmR(E), (1.27)

k=1

where j is the k*® element of fB3(i).

40

Bibliography

[1] Markov Chain Combat Models for Attrition Prediction and Mission Control, L. Tunay, J. Goodwin,
and H. Mukai, presented and accepted for publication in 3rd Int’l Meeting of INFORMS Military
Applications Society (3MAS), (San Antonio, Texas), November 2000.

41

42

Chapter 2

Experiment 2: Controller
Performance Comparison with Other
Controllers

2.1 Executive Summary

This is experiment for hypothesis two. Both the plant and internal models are the same, i.e., the
Mission Dynamics Continuous-time Model (MDCM). There is no noise added to the state variables when
constructing the observed state variables (the output variables). The control actions of the Blue and
Red teams are generated by one of the following strategies: the proposed game theoretic algorithm, a
simple heuristic stochastic strategy (e.g. a movement bias is given toward targets), a simple heuristic
deterministic strategy, and a human planner.

The strategy adopted by Blue and Red is optimal with sense of a Nash equilibrium with respect to
the value function; that is, it maximizes the value function with respect to Red and minimizes it with
respect to Blue.

2.2 Experiment Scope

We did a series of experiments to evaluate the effectiveness of the current differential game technology
as a means of countering the enemy actions under idealized situations with perfect information about
enemy states, initial conditions and objectives.

For the experiments we considered two different one vs. one scenarios and four different cases correspond-
ing to each scenario. In all cases the strategy for the blue player was determined by a game theoretic
controller, with running cost on the velocity controls and the distance to the target, and terminal cost
on the final number of platforms.

Case 1 (for each of the two scenarios) represents the baseline for comparison, as in this case the actions
for red were also determined using a game theoretic controller.

For Case 2, an open loop, heuristic-deterministic strategy was adopted for the red player, the idea behind
it summarized as follows: reach the target for the red units while avoiding confrontation by taking an
indirect route towards the target, such that any possible encounter with the blue units will occur as far
as possible from the target of the blue units. This strategy is consistent with the weights on the payoff
function selected for the blue player, except that no effort made to minimize the control effort.

For Case 3, a heuristic-stochastic strategy was adopted for the red player. Basically, a direct route was
plotted for the red units to follow towards their target, with random shifts in direction, velocity and firing
intensity introduced at several intervals along the route.

Finally, for Case 4 a human planner assumed the control of the red units, trying to accomplish the same

43

Table 2.1: List of Scenarios

Blue

Red

Case 1 (cross 1, joust 1) | Game theoretic controller

Game theoretic controller

Case 2 (cross 2, joust 2) | Game theoretic controller

Deterministic Heuristic controller

Case 3 (cross 3, joust 3) | Game theoretic controller

Stochastic Heuristic controller

Case 4 (cross 4, joust 4) | Game theoretic controller

Human-being planner

B1:interceptor, R1:bomber
100

90+
80
70

E(Z)

501 \ X

Target of B1
40F

30f 1

20r X
Target of Rt

0 s

Time:
20.0 min

10 20 30 40 60 70 80 90

50
& (k)

Figure 2.1: Cross 1: Trajectories

objectives as before.

2.3 Experiment Results

2.3.1 Scenario One: Cross

44

100

81:bly, R1red

08F

8
o8t

g2r

0 2 4 - § 8 10 12 14 16 18 20
time (min)

08

R
*06-
04

02

0) L " . . 1 s),
0 2 4 6 8 10 12 14 16 18 2
{ime {min)

Figure 2.2: Cross 1: Firing Intensities

B1:blu, R1:red

8
g5
04

02

)
0 2 4 6) 10 12 14 16 18 20
time (min)

08

R
[
04

02

: L \
[2 4 6 8 10 12 14 16 18 20
time (min}

Figure 2.3: Cross 1: Velocities

BEblu, Rired

0 L A L L ' 1 L L

0 2 4 6 8 10 12 4 18
time {min)

18 20

0 i ! ! i s i s s

0 2 4 6 8 10 12 14 18
time (min}

Figure 2.4: Cross 1: Number of Platforms

B1:interceptor,R1:bomber
100

801

80

70

2
3 150 X
Target of Bt

40H

30

20

w
Target of R

Time:
20.0 min

o L s . L " . : L L
4 10 20 30 40 50 60 70 80 90

£ (k)

Figure 2.5: Cross 2: Trajectories

46

B1:blu, Rtred

121
1
08+
B
"06
0.4}
0.2}
o s
0 2 4 6 8 10 12 14 16 18 20
time {min)
12r
1%
08
R
T [11:1
04r
02-
0 ; . L . . ; . .)
[} 2 4 3 8 10 12 14 16 18 20
time (min)
Figure 2.6: Cross 2: Firing Intensities
B1:bly, R1:red
1.2
¢
08r
WYs
04
0.2
0
0 2 4 & 8 10 12 14 16 18 2
time (min)
12¢
1 b
08}
Yot
04
0.2f
0 L . . n L s ! \ ;
0 2 4 6 8 10 12 14 16 18 20
time {min)

Figure 2.7: Cross 2: Velocities

47

BLblu, R1red

0 i : L ' L L L i s
Q 2 4 & 8 10 12 14 16 18 20
time (min}

1 1 L L 1)
0 2 4 3 8 10 12 14 16 18 20
time (min)

Figure 2.8: Cross 2: Number of Platforms

B1:interceptor,R1:bomber

701

Pl . X Time:
Target of Bt 20.0 min

401
30

201
Target of RY

0 5 L . s L . " . .
0 10 20 30 40 50 60 70 80 80 100

£)

Figure 2.9: Cross 3: Trajectories

48

B1:bhy, R1:red

B
Tosk

02

0 2 4 6 8 10 12 4 16 18 20
fime (min)

R
o6

04r-

0 t L L ; i L L t L i

time {min)

Figure 2.10: Cross 3: Firing Intensities

B1:bly, RY:red

08

R
Y
04

02

t L L "
Q 2 4 6 8 10 12 14 16 18 20
time (min}

Figure 2.11: Cross 3: Velocities

49

B1:blu, Ri:red

0 L 4 I ¢ L L 1 L i
o 2 4 § 8 10 12 14 16 18 20
time (min)

o L 1 L L L L i I L)
[2 4 6 8 10 12 14 16 18 pit)
time {min)

Figure 2.12: Cross 3: Number of Platforms

B1:interceptor,R1:bomber
100

80t
801

701

@ 50 X Time:
Target of Bt 20.0 min
o t

30+

20
Target of

[} L L i . L . r L s s

0 10 20 30 40 50 80 70 80 90 100
& fm)

Figure 2.13: Cross 4: Trajectories

50

B1:blu, R1:red

08
B
o6

04}

0 L 1 i i L 4 1

0 2 4 [} 8 10 12 14 16 18
time (min}

08F

04

0.2+

0 s L L L 1 ' L L

0 2 4 6 8 10 12 14 16 18
time {min)

Figure 2.14: Cross 4: Firing Intensities

51

Bibiu, R1ved

121
o
08 j\
g
0.4
8.2
0 : . — ; ,
0 2 4 6 8 10 12 14 16 18 20
time {min)
12p
1
08
%
04 -
N . . , ‘
0 2 4 6 8 10 12 14 186 18 20
time {min}
Figure 2.15: Cross 4: Velocities
Bibiy, Rived
12r
10
o
ﬂB 6
o
2
0 2 4 8 8 10 12 14 16 18 26
time {min)
12
10
ol
W
.
o
0 2 4 [8 10 12 14 18 18 20
time {min}

Figure 2.16: Cross 4: Number of Platforms

2.3.2 Scenario Two: Joust

52

B1interceptor,R1:bomber

100
90
a0
T0
80
@ % \x Time:
Riar 20.0 min
Blar
40
30
20
10
0 10 20 30 40 50 60 70 80 90 100
E(‘) (km)
Figure 2.17: Joust 1: Trajectories
Bf:bly, R1:red
12r
n
Dar
w
061
04
02
0 2 4 [] 8 16 12 14 16 18
time {min}
12
it
0.8
'y
06
04}
02
0 2 4 6 8 10 12 1 1% 18
time {min)

Figure 2.18: Joust 1: Firing Intensities

53

Rthiy, Rirad

0.8
(N
0.4

0.2

0 L L L i PR S — A B U]
0 2 4 8 8 1 12 14 16 18 N
time {min)

0.8
[N
04

02

0 2 4 [8 10 12 14 16 18 20
time {rmin)

Figure 2.19: Joust 1: Velocities

Bt:blu, Ri:red

0 L L i L 2 L . L ; i
¢ 2 4 6 8 10 12 14 18 18 20
time (min}

0 | 3 L L i L . 1 i s
[2 4 6 8 10 12 A 16 18 20
time (min)

Figure 2.20: Joust 1: Number of Platforms

54

B1tinterceptor, R1:bormber
100

80
70
601

2]
i()50

X Time:

ar 20.0 min

R

401

201

o s . . N . : L
0 10 20 30 40 50 60 70 80 90 100

£ fmy

Figure 2.21: Joust 2: Trajectories

B1:bhi, R1:red
14

12f

BB
0.6}
04+
02

0 s L L 1 L . L : L :
0 2 4 8 8 10 12 14 16 18 20
time (min)

Figure 2.22: Joust 2: Firing Intensities

55

B1:blu, R:red

0 2 4 6 8 10 12 14 18 18 20
time {min)
12
s
08[
1
0.6
041
0.2r
0 1 ; L L 1 L L L \ s
0 2 4 6 8 10 12 14 18 18 20
time {min)
Figure 2.23: Joust 2: Velocities
B1:blu, R1:red
12r
10
8
ﬂe (15
18
2
0 L . i L \ L : ; 2)
0 2 4 [8 10 12 14 16 18 20
time {min)
12r
10
8
LN
4t
2
0 | s : L 1 I 1 L)
0 2 4 6 8 10 1 14 16 18 20
time {min)

Figure 2.24: Joust 2: Number of Platforms

56

B1:interceptor, R1:-bomber
100

80+

T0F

@ 50 \/)\(Time:

Rtar 1 20.0 min
Blar

40

20+

) . " s . n L n L L J
0 10 20 30 40 50 60 70 80 90 100

& fm)

Figure 2.25: Joust 3: Trajectories

B1:blu, R1:red

081

04+

021

0 L L L L L . : L L)
0 2 4 [8 10 12 14 16 18 20
time {min)

Figure 2.26: Joust 3: Firing Intensities

81:bly, Ried

2 4 6 4 10 12 " 16 18

20
time (min)
150
1
(]
0.5+
0 L s L : . L . 1 s
0 2 4 6 8 10 12 14 16 18 20
time (min)
Figure 2.27: Joust 3: Velocities
B1:bly, R1:red
12r
10
sl
'\B 14
4k
2
0 : i 1 1 ; L : 1 i
[4 [10 12 1 18 18 20
time {min)
12r
10
8
LS
4k
2k
0 I L L L L \ 1 ; ot
0 4 6 8 10 12 14 16 18 20
time {min)

Figure 2.28: Joust 3: Number of Platforms

B1tinterceptor, R1:bomber

1001
90
80
701
60F
@ Q Time:
% Rtar - “_ ! X 20.0 min
Blar
401
301
20¢
10
o e
0 10 20 30 40 50 60 70 80 90 100
& fm)
Figure 2.29: Joust 4: Trajectories
B1:bly, Rt:red
15f
1+
KB
ot
o 2 4 6 & w0 12 1u % 18 2
time {min)
15
1
IIR
05}
0 2 4 6 8 10 12 14 16 18 20
time (min)

Figure 2.30: Joust 4: Firing Intensities

59

A1:blu. RTred

0.8
TS
0.4

0.2

0 It 1 1 i s L L L

0 2 4 6 8 10 12 19 16 18
time (min}

0.8
"5
04

0.2

20

<

0 2 4 6 8 10 12 14 16 18
time (min}

Figure 2.31: Joust 4: Velocities

B1:blu, Rired

20

'\Bs—

VlR5~

1 L : 1

1
0 2 4 [8 10 12 14 16 18
time (min)

Figure 2.32: Joust 4: Number of Platforms

60

i

Table 2.2. Scenario One - Cross (Parameters Value)

Initial Conditions Weights
Platform | Xo | Yp | Speed | Distance | Final Platform
Blue 10 80 | 50 | 200 0.1 0.2
Red 10 50 | 20 | 200 0.1 20

Table 2.3: Scenario Two ~ Joust (Parameters)

Initial Conditions Weights
Platform | Xy | Yy | Speed | Distance | Final Platform
Blue 10 80 | 50 150 0.1 0.2
Red 10 20 | 50 150 0.1 20

2.4 Conclusions

Tables two and four show that using different control strategies, other than the one based on differential
game theory, it was possible to improve the performance of the red player with respect to the number of
platform losses and final distance to the target.

Tables three and five show that the total cost that the red player was trying to maximize, according
to the game theoretic controller, was indeed maximum in Case 1, when the game theoretic controller
was used to determine the strategy of both players. Furthermore, the total value of the game (red minus
blue) was also a maximum for Case 1.

61

Table 2.4: Experiment Results for Scenario one — Parameter Values

BLUE Red
Platform | X f Yf Plat lost | Distance | Platform | X f Yf Plat lost | Distance
crossl 7.3 64.8 | 47.5 2.7 15.4 4.0 47.5 | 30.1 6.0 10.0
cross2 7.5 49.9 | 60.7 2.5 32.0 7.8 50.1 | 19.8 2.2 2.0
cross3 5.9 63.4 | 494 4.1 16.6 6.9 494 | 199 3.1 6.1
crossd 6.6 71.8 | 40.3 3.4 12.7 7.0 49.8 | 19.6 3.0 4.5
Table 2.5: Experiment Results for Scenario One — Cost Components
BLUE Red Game Value
Speed | Distance | Final Plat | Total | Speed | Distance | Final Plat | Total | Game Value
crossl 819 7927 -11 8735 | -898 -2110 323 -2685 6050
cross2 | 1721 6081 -11 7791 | -5346 -7 1219 -5514 2277
crossd | 1033 7798 -7 8824 | -2976 -2027 940 -4063 4761
cross4 | 1887 8111 -9 9989 | -3078 -2508 975 -4611 5378
Table 2.6: Experiment Results for Scenario Two — Parameter Values
BLUE RED
Platform | X f Yf Plat lost | Distance | Plat | X f Yf Plat lost | Distance
joust1 8.4 68.9 | 59.9 1.6 14.9 59 | 26.8 | 61.9 4.1 13.7
joust2 6.3 66.3 | 33.7 3.7 213 6.5 | 19.8 | 49.7 3.5 3.6
joust3 6.2 67.5 | 48.7 3.8 12.6 6.0 | 249 | 63.1 4.0 14.0
joust4 7.8 69.4 | 49.7 2.2 10.6 7.2 | 21.8 | 49.3 2.8 19.3
Table 2.7: Experiment Results for Scenario Two — Cost Components
BLUE Red Game Value
Speed | Distance | Final Plat | Total | Speed | Distance | Final Plat | Total | Game Value
joustl | 1360 7794 -14 9140 | -1453 | -2183 693 -2943 6197
joust2 | 1727 7473 -8 9192 | -3273 -757 837 -3192 6000
joustd | 1761 8038 -8 9791 | -2538 -1936 724 -3750 6041
joust4 | 885 8068 -12 8941 | -1673 -2720 1041 -3352 5589

62

2.5 References

(1] Sequential Linear Quadratic Method for Differential Games
[2] Mission Dynamics Continuous-time Model, Version 2.55

2.6 Appendix

2.6.1 Scenario File for Cross

% This scenario file is for experiment 1.Put different weight on red’s terminal
% number of platforms, 7th element in g _Qf = diag([0 0 -0.20 0 0 0 20 01);

% 40

h 60
%dR(1)=20 or 40 or 60.

Tttt Tttt to o o oo b T e T A Tt e o T BB N R AR LR A AL e

% UNIT PROPERTIES

IRt T Tt T Tt T T T T A b el b R W T S A AR e

% numbers of categories

un.NBc=5; un.NRc=5;

% each category is represented by an integer,

% which will used for indexing into parameter matrices

% 1:ground troops 2:air defense 3:bombers

% 4:interceptors 5:SEAD

% numbers of units

NB_u=1; NR_u=1; un.NBu=NB_u; un.NRu=NR_u;

% categories of units for each force

% Blue 1 is a bomber unit, Blue 2 is an interceptor unit

% Red 1 is a ground troop unit, Red 2 is an interceptor unit
un.cB=[4]; un.cR=[4];

% descriptive names of units

un.nameB = {’fighter’}; un.nameR = {’interceptor’};

% Assume that one unit can attack only one enemy unit,

% but one unit can be attacked by multiple units

% In this example, Bl shoots at R1, B2 shoots at R2

% R1 shoots at B1l, R2 shoots at B2

% matrix form

un.fB=[1]; un.fR=[1];

% from the shooter’s perspective:

% Blue unit i shoots at all the Red units with indices un.fsB{i}
un.fsB={1}; un.fsR={1};

% from the shootee’s perspective:

% Blue unit i is shooted at by all the Red units with indices
%un.feB{i}

un.feB={1}; un.feR={1};

% state vectors for each force

% xB=[xiB(1,1); xiB(1,2); etaB(1); zetaB(1); xiB(2,1); xiB(2,2);
% etaB(2); zetaB(2)]

% state vector for the whole system

% xsys=[xB; xR]

% initial conditions for states

% [xiB(1,1); xiB(1,2); etaB(1); zetaB(1); xiB(2,1);
%xiB(2,2); etaB(2); zetaB(2)]

63

xiB(1,1)=20; xiB(1,2)=50; etaB(1)=10; zetaB(1)=10; xiR(1,1)=50;
xiR(1,2)=80; etaR(1)=10; zetaR(1)=10; xB_init=[xiB(1,:)’;
etaB(1); zetaB(1)]; xR_init=[xiR(1,:)’; etaR(1); zetaR(1)];
x_init=[xB_init; xR_init];

% control vector for a Blue unit i

% uB_i=[muB_ix; muB_iy; piB_i]
% control vector for the Blue force
% uB=[uB(1); uB(2); ...; uB_NBu 1;
% control vector for the whole system
% usys=[uB ; uRl]
% parameters for plant simulation blocks, do not edit
% control constraints
numinputs = 3*(un.NBut+un.NRu); numstates = 4% (un.NBu+un.NRu) ;
contr_uplim = ones(l,numinputs); contr_lolim = []; for
i=1:un.NBu+un.NRu,

contr_lolim = [comtr_lolim, -1, -1, 0];
end;
ol T Tt T o T oo T o T T T T T o e e o o o oo e o 2 e
% CONSTANT PARAMETERS (WHICH DEPEND ON THE SCENARIO)
T el et T o o e o T T T T Tt T T T b o T e T T o o oo o T o oo o o
% maximum speeds, km/min
pm.alphaB={0.5; 0; 10; 10; 10]; pm.alphaR=[0.5; 0; 10; 10; 10];
% parameter in probability of engagement function
pm.sigmaB=ones (un.NBc,un.NRc); pm.sigmaR=ones (un.NRc,un.NBc);
% Example: sigma for Blue unit i against Red unit j is
% pm.sigmaB(un.cB(i),un.cR(j))
% modification factor for number of engagements
pm.betaengB=ones (un.NBc,un.NRc) ; pm.betaengR=ones(un.NRc,un.NBc);
% modification factor for prob kill of a weapon
pm.betawepB=ones (un.NBc,un.NRc) ; pm.betawepR=ones(un.NRc,un.NBc);
% prob kill of weapon type i against platform type j
pm.pkillB=0.8%ones(un.NBc,un.NRc);
pm.pkillR=0.8*ones(un.NRc,un.NBc);
% salvo size of platform type i shooting at platform type j
pn.salvoB=ones(un.NBc,un.NRc); pm.salvoR=ones(un.NRc,un.NBc);
% parameter of the distance factor (varphi) function
pm.rzeroB=5%ones (un.NBc,un.NRc) ; pm.rzeroR=5*ones (un.NRc,un.NBc) ;
I el st o T s T T T T T T T T o T T o o T o T o T oo oo
% TERRAIN INFORMATION
Tttt o o T o T T e T T Tl b o T Tl o T o oo oo T oo oo
% the rectangular zone for the mission
% coordinates of lower left and upper right corners, in km
% zone_lim= [xmin xmax;

% ymin ymax]
Ytr.zone_lim=[0 100;
% 0 100];

tr.zone_lim=[[0;0],[100;100]1];
% obstacle locations, radii and names
tr.NBo=0; tr.NRo=0;

tr.obsB(1).loc=[0 0]; % x and y, in km
tr.obsB(1) .rad=0; tr.obsB(1l).name=’’;
tr.obsR(1) .loc={0 0]; % x and y, in km

64

tr.obsR(1) .rad=0; tr.obsR(1).name=’’;

% fixed target locations, sizes and names

tr.NBt=1; tr.NRt=1; gB(1,1)=80; gB(1,2)=50;

tr.tarB(1).loc=[gB(1,1) , gB(1,2)]; % x and y, in km
tr.tarB(1).size=0; % not used in this version

tr.tarB(1) .name=’Bltarget’; gR(1,1)=50; qR(1,2)=20;
tr.tarR(1).loc=[qR(1,1) qR(1,2)1; % x and y, in km
tr.tarR(1).size=0; tr.tarR(1).name=’Rltarget’;

% initial and final times for mission, unit of time is 1 min

t_initfin=[0 ; 20];

% use all caps for global variables or make them stand out in some way
global NOM_INPUTTRAJ NOM_STATETRAJ NOM_T

load simpnominalll; % load the nominal trajectory

Bt I Tt R h It b bAoA It e deto oo Fo e oo o o

% weights in the cost function of the nonlinear-quadratic game

% min max J(uB,uR)

% uB uR

%

% J(uB,uR) = (1/2)*

%integrallti,tf]{x’*Q*x + 2%q’*x + 2%ri1’*uB - 2%r2’*uR +

%uB’#R1i*uB - uR’*R2*uR }

% + (1/2)*x(t£) ' *#Qf*xx (t£) + qf ’*x(tf)

VAN AN NSNS AN Sy AN YA SN AN AN AN AN YN A S YA

global g Q g_q g.r1 g r2 g R1 g R2 g Qf g_qf

% [xiB(1,1); xiB(1,2); etaB(1); zetaB(1); xiB(2,1);

%xiB(2,2); etaB(2); zetaB(2)]

T T o Tttt el el el b T AT bl Al b bR AR A Rl e

% weights in the cost function of the nonlinear-quadratic game(MDCM2.55)
% min max J(uB,uR)

% uB uR

A

%J(uB,uR)=integral [t0,tf] {sum_{i=1}"{NB_u}aB(i)* (| |xiB(i) (¢}~

%qB(1) (£) 1) "2-bB(i)*(etaB(i) (£t)) "2

% -sum_{k=1}"NB_o pB(i,k)|IxiB(i)(t)~eB(k){|"2+{uB(i) (£)}’RB(i)uB(i) (t))
% -sum_{j=1}"{NR_u}aR(3)* (IIxiR(§) (t)-qR(3) (£) 1) "2-bR(j)*(etaR(j)(£))"2
% -sum_{1=1}"NR_o pR(j,1) | |xiR(§) (£)~eR(1) I |"2+{uR(J) (£)}’RR(1IuR(J) (t))
% +sum_{i=1}"{NB_u}cB(i)* (|[xiB(i) (t£)-qB(i) (t£)|[)"2-dB(i)*(etaB(i) (tf))"2)
% =sum_{i=1}"{NR_u}cR(i)* (lIxiR(i) (t£)-qR(1) (t£)11)"2-dR(i)*(etaR(i) (tf))"2)
Tl T Tl T T Tl T T I T At el h L L L I Lk h A R A RIS b AL ALAAAAA DDA
aB(1)=0.05;%weight on the distance between blue 1 and its target.

bB(1)=0; %weight on the number of blue 1’s platform(running cost).
aR(1)=0.05;%weight on the distance between red 1 and its target.

bR(1)=0; %weight on the number of red 1’s platform(running cost).
%weights on control command,velocity and firing intensity,for blue 1.
RB_1=([800 0 0 ; 0 800 O ; 0 O 200]);%weights on control command for blue 1.
RR_1=([800 0 0 ; O 800 0 ; O O 200]);%weights on control command for red 1.
cB(1)=0;%weight on the distance between blue 1 and its target at final time.
dB(1)=0.1;%weight on the terminal number of blue 1’s platforms.

cR(1)=0;

dR{1)=10;% or 4o or 60.

Quec=2%[aB(1); aB(1); -bB(1); 0; -aR(1); -aR(1); bR(1); 0];
Quecf=2%[cB(1); cB(1); -dB(1); 0; -cR(1); -cR(1); dR(1); 0 1; g_Q

= diag(Quec); g_q =2+[-aB(1)*qB(1,1); -aB(1)*qB(1,2); 0 ; 0;

65

1; g_r1l = zeros(3+NB_u,1);
diag(Qvecf); g_qf =
0 ; 0; cR(1)xqR(1,1);

aR(1)*gR(1,1); aR(1)*qR(1,2); 0 ; O
g_R1 = diag([diag([RB_11)1); g_Qf =
2% [-cB(1)*gB(1,1); -cB(1)*gB(1,2);
cR(1)*gR(1,2); 0 ; 0];

2.6.2 Scenario File for Joust

G Tl T Il I I I Tl AT TR T ol T to o Tt oo o o o e T oo oo 1o T oo oo
% UNIT PROPERTIES

ottt Tttt Tl T T T A T T AT T o o ot o oo o oo oo oo oo o
% numbers of categories

un.NBc=5; un.NRc=5;

% each category is represented by an integer,

% which will used for indexing into parameter matrices

% 1:ground troops 2:air defense 3:bombers

% 4:interceptors 5:SEAD

% numbers of units

un.NBu=1; un.NRu=1;

% categories of units for each force

% Blue 1 is a bomber unit, Blue 2 is an interceptor unit

% Red 1 is a ground troop unit, Red 2 is an interceptor unit
un.cB=[4]; un.cR=[{4];

% descriptive names of units

un.nameB = {’interceptor’}; un.nameR = {’bomber’};

% Assume that one unit can attack only one enemy unit,

% but one unit can be attacked by multiple units

% In this example, Bl shoots at R1, B2 shoots at R2

% R1 shoots at B2, R2 shoots at Bl

% matrix form

un.fB=[1]; un.fR=[1];

% from the shooter’s perspective:

% Blue unit i shoots at all the Red units with indices un.fsB{i}
un.fsB={1 }; un.fsR={1 };

% from the shootee’s perspective:

% Blue unit i is shooted at by all the Red units with indices un.feB{i}
un.feB={ 1}; un.feR={1 };

% state vectors for each force

% xB=[xiB_1x; xiB_1y; etaB_1; zetaB_1; xiB_2x; xiB_2y; etaB_2; zetaB_2]
% state vector for the whole system

% xsys=[xB; xR]

% initial conditions for states

% [xiB_1ix; xiB_ly; etaB_1; zetaB_1; xiB_2x; xiB_2y; etaB_2; zetaB_2]
xB_init=[20; 50; 10; 10 }; xR_init=[80; 52;

10; 10 1; x_init=[xB_init; xR_init];

% control vector for a Blue unit i

% uB_i=[muB_ix; muB_iy; piB_i]

% control vector for the Blue force

% uB=[uB_1; uB_2; ...; uB_NBu];

% control vector for the whole system

% usys=[uB ; uR]

numinputs = 3*(un.NBu+un.NRu); numstates = 4*(un.NBu+un.NRu);
contr_uplim = ones(l,numinputs); contr_lolim = []; for
i=1:;un.NBu+un.NRu,

66

contr_lolim = [contr_lolim, -1, -1, 0];
end;
Il e Tt T o e el e e e e oo T A o o o o o e e e o o
% CONSTANT PARAMETERS (WHICH DEPEND ON THE SCENARIO)
bttt T bt T o et T o ot T o o o o o T oot o oo o e oo o T o e o
% maximum speeds, km/min
pm.alphaB=[0.5; 0; 10; 10; 10]; pm.alphaR=[0.5; 0; 10; 10; 10];
% parameter in probability of engagement function
pm.sigmaB=ones (un.NBc,un.NRc); pm.sigmaR=ones(un.NRc,un.NBc);
%Example:sigma for Blue unit i against Red unit j is
% pm.sigmaB(un.cB{(i),un.cR(j))
% modification factor for number of engagements
pm.betaengB=ones (un.NBc,un.NRc); pm.betaengR=ones(un.NRc,un.NBc);
% modification factor for prob kill of a weapon
pm.betawepB=ones(un.NBc,un.NRc); pm.betawepR=ones(un.NRc,un.NBc);
% prob kill of weapon type i against platform type j
pm.pkillB=0.8+%ones (un.NBc,un.NRc);
pm.pkillR=0.8*ones (un.NRc,un.NBc);
% salvo size of platform type i shooting at platform type j
pm.salvoB=ones(un.NBc,un.NRc); pm.salvoR=ones(un.NRc,un.NBc);
% parameter of the distance factor (varphi) function
pm.rzeroB=5*ones(un.NBc,un.NRc); pm.rzeroR=5*ones(un.NRc,un.NBc);
IR Tt R IR Tl ARt e T o s et T b o o e oo T o oo o o
% TERRAIN INFORMATION
Y Y AN AN AN AN YN AN NS AN AN YN AN SN Y AN S YA AN YA A YA Y Y YA A
% the rectangular zone for the mission -
% coordinates of lower left and upper right corners, in km
% zone_lim= [[xmin;ymin] , [xmax;ymax]]
tr.zone_lim=[[0;0], [100;100]];
% obstacle locations, radii and names
tr.NBo=0; tr.NRo=0;

tr.obsB(1).loc=[0 0]; % x and y, in km
tr.obsB(1).rad=0; tr.obsB(1).name='’;
tr.obsR(1).loc=[0 0]; % x and y, in km

tr.obsR(1).rad=0; tr.obsR(1).name=’’;
% fixed target locations, sizes and names
tr.NBt=1; tr.NRt=1; q1B=80;q2B=50; tr.tarB(1).loc=[qlB q2B];

%tr.tarB(1).loc=[80 50]; % x and y, in km
tr.tarB(1l).size=0; % not used in this version
tr.tarB(1) .name=’Btarget’; qlR=20; q2R=52;

tr.tarR(1) .loc=[qlR q2R]; % x and y, in km
%tr.tarR(1) .loc=[20 32];

tr.tarR(1).loc=[qiR q2R]; % x and y, in km

tr.tarR(1).size=0; tr.tarR(1).name=’Rtarget’;

% initial and final times for mission, unit of time is 1 min
t_initfin=[0 ; 20];

% use all caps for global variables or make them stand out in some way
global NOM_INPUTTRAJ NOM_STATETRAJ NOM_T LASTFB

load joust_nominal; % load the nominal trajectory

TR R Dl R I BRI DT Il el e o o b oo e to o ek o o ot oo o o e

% weights in the cost function of the nonlinear-quadratic game

% min max J(uB,uR)

% uB uR

67

%

% J(uB,uR) = (1/2)*

% integral{ti,tf]{x’*Qxx + 2¥q’*x + 2*rl’*uB - 2*r2’*uR

%+ uB’*R1%uB - uR’*R2*uR }

% + (1/2)*x(t£) > *Qf¥x (tf) + qf ’*x(tf)

Yo Tl te ettt o T o T o Tt T T T Tt o T oo el T b e R T e

aB=1; aR=1; bB=10; bR=10; global g_Q g.q g_rl g_r2 g Rl g R2 g Qf

g-af

% [xiB_1x; xiB_ly; etaB_1; zetaB_1; xiB_2x; xiB_2y; etaB_.2; zetaB_2]
Quec = 0.1%[1 ; 1 0 ; 0 ; -1 -1 ; 0 ;

01;

%Qvec = [aB;aB;-bB;0;-aR;-aR;bR;0];
g-Q = diag(Qvec);

%g_q = zeros(8,1);

g.q = 0.1x[-80; -50; 0; 0; 20; 52; 0; 0]; g_rl = zeros(3,1); g.r2
= zeros(3,1); g_R1 = 150%diag({4 4 21); g_R2 = 150*diag([4 4 2]);
g_Qf = diag({0 0 -0.20 0 0 0 5 01);

% 15

% 35

g_qf = zeros(8,1); clear aB aR bB bR;

68

Chapter 3

Experiment 3: Controller
Performance under Noise in the
State Observation

3.1 Executive Summary

We performed a series of experiments to evaluate the effectiveness of the current differential game technol-
ogy as a means of countering enemy actions under idealized situations with perfect information about the
enemy initial conditions and objectives, but with noisy measurements of the enemy state. Our main find-
ings are that while average values look good, individual sample paths might be quite surprising. One can
conclude that the game theoretic controller CPC (Controller-Plant-Controller) is sensitive to observation
noise. The first step to remedy the noise problem is to implement proper filters in the controllers.

3.2 Purpose of the Experiment

The purpose of the experiments is to test the behavior of the game theoretic controller CPC (Controller-
Plant-Controller) when there is noise added to the measurements of the enemy state.

3.3 Hypothesis to Prove or Disprove

The current differential game technology provides an effective means of countering enemy actions under
idealized situations with perfect information about the enemy initial conditions and objectives, but with
noisy measurements of the enemy state.

3.4 Experimental Setup

We performed a series of experiments to evaluate the effectiveness of the current differential game tech-
nology as a means of countering enemy actions under idealized situations with perfect information about
the enemy initial conditions and objectives, but with noisy measurements of the enemy state. Here, both
the plant and internal models are the same, i.e., the MDCM. Increasing levels of noise will be added to
the state variables when constructing the observed state variables (the output variables). The control
actions of the Blue and Red teams are generated by the proposed game theoretic algorithm.

The Sequential Linear Quadratic Method (SLQM), as described in [3] and [4] solves only a math-
ematical problem. Once the weights and the parameters are set, the method computes a solution to
the differential game. This means that all the future actions of both parties are determined. They are

69

described in terms of functions of time with the domain being the duration of the game. In this setup
neither of the parties has any initiative, aside that a third party which has the complete knowledge of all
the resources for both sides and the battlefield is doing the computations.

The fact that there is only one intelligent entity who does all the computations is quite unnatural since
in a war there are {generally) three separate entities: the friendly side, the enemy and the battlefield. The
battlefield determines the rules, the dynamics of the war. The information coming from the battlefield is
observed by each side with possible addition of noise and corruption and it is processed by the friendly
and enemy sides using the intelligence they have.

The natural step in making the experiment setup more realistic is therefore to separate the three
entities mentioned above. This results in the Controller-Plant-Controller (CPC) Setup of Figure 3.1.

uBlue Noisy x

Blue Controller s IU\UU

NoiseB

Controls States

Battlefield

O+l

NoiseR

uRed Noisy x

Red Controller

Figure 3.1: Controller-Plant-Controller Setup

The CPC setup realizes the separation of the battlefield from the enemy and friendly sides. In this
way noise can be injected separately to the observation channels of each side. More important than that
each side will have its own intelligence, the intelligence to compute the control inputs to the battlefield.
In our case, based on the development of the game theoretical method, the intelligence for both sides is
chosen to be the differential game solver based on SLQM. This means that each of the Red and Blue sides
will have their model of the battlefield and the cost function, possibly with different weights, parameter
mismatches, parametric uncertainties. Each side will compute the solution of the game they posed
(internal to the controller) and this way will prepare their future inputs to the battlefield. It is important
to note here that the sides can model the battle as they want, the implementation leaves this option free.
The Blue side might be calculating its inputs to the battlefield based on the game controller schemes
whereas the red side might be using another scheme like heuristic methods or artificial intelligence. The
advantage of the CPC setup comes from its flexibility and modularity. The model for the battlefield is
kept separate from the rest, all it needs are the inputs. It does not matter how the inputs are calculated.
This also opens the possibility of changing the battlefield (plant) model and keep the same setup.

Another subtle point is about the modeling of the enemy side. For example the Blue side might be
using the game technology to compute its inputs to the battlefield. The Blue side has in its internal
model the Red side as the opponent in its internal game. The Red side on the other hand does not
necessarily have to use the game technology, but instead might be using a different approach, say a
heuristic controller. Regardless of this, since the Blue side is sticking to the game technology it would be
modeling Red’s actions incorporated in its game.

Pushing the content of a controller one step further, since the sides are separated they can inde-
pendently implement their detection technology or any future new technology in their controllers. For

70

instance the weight estimator for the enemy actions which looks like a highly challenging task at this
point could be implemented in the controllers of both sides in the future. Basically as the enemy actions
are not known in the beginning of the battle, the enemy weights in the internal game model are unknown.
Starting from a best guess for the enemy weights in the beginning of the battle the weight estimator can
update them based on the past enemy actions. This “adaptive” approach is not implemented yet, but is
certainly worth investigating in future. It is clear that an adaptation scheme must be carefully invented
since the subject is new and not much is known.

Aside all the internals of the controllers it is clear that each side will have better information about
itself from the battlefield compared to the information observed about the enemy side. This structure
can easily be modeled since the setup allows injection of the noise to the state observation in any desired
manner, i.e. any kind of noise can be injected to any desired state.

Implementation of the CPC set-up

Although some of the conceptual entities are not separately programmed it is very important to under-
stand the ideas behind the implementation. The general idea to realize the setup is that each of the
Blue and Red commanders has a vision about the inputs they will supply to the battlefield even before
the simulation starts. This is done by setting up their own games and computing the solution by using
SLQM. The inputs they supply to the battlefield are just the solutions of these separate games. This
is in a sense modeling the knowledge prior to the battle. The calculations are carried out in the Game
Calculator block in Figure 3.2. The input-state pair coming from the game calculator is then fed to the
Storage block of Figure 3.2. It is assumed here that both sides have their intelligence chosen as the game
technology, but as described above this is not necessary. All one needs to incorporate any other kind of
intelligence in the simulation is just to supply the inputs it computed to the battlefield.

Once the prebattle computations are finished, the solution of the game, the inputs and the corre-
sponding state trajectories are kept in the storage block for each side. In the beginning of the simulation,
which can be visualized in Figure 3.1 both sides supply their stored input to the battlefield. In return
the states corresponding to the inputs are observed from the battlefield with the addition of noise. This
information is collected at the controller and it is filtered. It is compared to the stored value of the states.
The storage block keeps mainly the precomputed input-state pair for each side inside the controller. It
serves the purpose of sending the precomputed inputs to the battlefield as long as the value of the actual
states is close to the predicted ones. This exactly means that as long as the battle takes its course as
predicted, the controller just feeds the precomputed inputs. If, however, at any given moment the actual
values of the states deviate from the precomputed values, the game calculator is recalled and it computes
a new input-state pair using the (possibly) updated weights and sends it to the storage block. The com-
parison task is achieved by the Decision Block. The new computation starts from the time the deviation
occurred and has as its final time the final time of the overall battle simulation. This is by no means a
restriction since the time horizon does not have to be constant and can be extended further if necessary.

71

P actual state we. & par. Updated weights P New Weights and param.
and parameters u
Weight/parameter
Estimator
D . Filtered State
Noisy x
Filter
predicted state
P or/off switch
L actual state Game Calculator
decision
1 game state
Decision Block
state & control u ————-—-——@
uRed
i NOT P on/off stored state
Logical
Operator Storage

Figure 3.2: Conceptual Representation of the Controller

Game Scenario
The scenario used in all the experiments is the crossll scenario. In which a Red Bomber is trying to
reach its target on the south starting from its base on the north. The Blue unit of interceptors on the
other hand starts from its base on west and flies to east to intercept the Red bomber.

The payoff function is given by

Jz;uB uf) = %/ttf c(t)Y Q(t)z(t) + 2z(t)' d(t)
+uB () RB()u® (t) + 225 (t)'rB(t)

— uB YRR (L) — 2uf(t)rR(t) | dt

3t Qpalty) + aty)'ry. (31)

All the parties, Blue side, Red side and the plant have the same model with the same parameters.
The parties are using the same intelligence based on the differential game theory. In this experiment the
information coming from the battlefield to the parties is noisy. The level of the noise is increased to see
how the controllers will react.

As both sides compute their own internal game it does not make sense to assign the same weights to
both sides. If all the weights were the same both sides would calculate the same thing twice. Therefore
in all the experiments whether noise or parametric mismatch (Experiment 4) is introduced there will
always be a weight mismatch between the parties. All other factors will be included in the experiments
gradually. The most complicated experiments are the ones with noisy observations where there are
weight differences and parameter mismatches (including plant and both controllers internal parameters,
see Experiment 4). It is a good way to think of the weight assignments as the decision on the strategy
whereas of the parameter mismatches (between plant and the other controller) and the noise as the
observation problems.

72

All the weights and the parameters are the same for both parties except the final cost weights. The
running costs for both sides are given as:

Il

[1/l0 v 0 0 0 0 00
0 1/10 00 0 0 00
0 0 00 0 0 00
0 0 00 0 0 00
Q= 0 0 00 -1/10 0 0 0
0 06 00 0 -1/10 0 0
0 0 00 0 0 00
0 0 00 0 0 0 0]
d=[-8 -5 0 0 5 2 0 0]
800 0 0 800 0 0 |
RE=1| 0 80 0 |RRE=| 0 800 O
0 0 200 0 0 200

rf=[0 0 0]rf=[0 0 0]
The weights which are different are the final cost matrices:

0
0
~1/5

QBy =

o O O o o o

o O O O O o o o
oo O O o o o o

i

o O O o o

-1/10

QRs =

o o o o o ©

0 0 O 0
0 00 0
0 0 0 0
0 0 0 0
0 00O 0
0 0O 0
0 00 0
0 0O 0
0 00 0
0 0 O 0
0 0O 0
0 00 0
0 00 0
0 0 0 0
0 00 0

o O O o o o O

0 60
0 000 0 O

As a reminder, the plant model describes the evolution of the states £;, &, the horizontal and vertical
positions, 7, the number of platforms, and ¢, the number of weapons per platform with the inputs p
and p2 describing the velocity vector and n the firing intensity respectively.

o O o o O o o o
[

0

s=[&1 &2 m G b L2 o G

73

Table 3.1: The Noise Levels for the Experiments

Experiment | Noise Level
1 1%
2 2%
3 3%
4 4%
5 5%
6 6%
7 %
8 8%
9 9%
10 10%
11 11%
12 15%
13 20%
14 25%
15 30%
16 35%
17 40%
18 50%
19 60%
20 90%
21 130%

wu={ et M2 T el fe2 T]

The final cost is only on the number of platforms with different weights in both parties which have
different values for both the blue and the red side’s internal games. Looking at the cost matrix for the
Blue side it is clear that Blue puts more weight on its final number of platforms as well as on Red’s final
number of platforms. This can be interpreted as Blue will try to eliminate Red’s platforms as much as
it can but at the same time will try to preserve its platforms. The Red side on the other hand does not
put too much cost on its and Blue’s final number of platforms compared to the Blue’s weights. This can
be interpreted as Red wants to reach its target at the cost of loosing its platforms and without too much
engaging with blue.

3.5 Experimental Results

At this first step of the experiments the noise is added to only the observation of the enemy states. It is
assumed that each side has perfect information about its own states. The noise is white noise with zero
mean and is generated by matlab using the random number generator. As each component of the states
has different numerical value ranges the noise injected to the same state cannot have uniform amplitude.
The amplitude of the injected noise is specified relatively to the initial condition of the state. For instance
if the initial horizontal position of the units is 80 and the number of the platforms is 10 with 10% noise
injected the maximum value that the noise amplitude can take for the position is 8 and for the number
of platforms is 1. Experiments with increasing percentage of noise level are carried out on the scenario.
The level of the noise is summarized in Table 3.1.

Figure 3.3 represents the development of the battle with perfect observation. Figures 3.4 — 3.7 show
the average value of 100 sample paths computed. The states and the controls are plotted, in addition
to that the times when the deviation becomes too much and the game is recomputed is plotted in the
Controller Times graph. The value of the controller times function is either zero or one and the average
value over the sample paths is presented in the graph. If one reads 0.4 at 6t* minute this means that

74

out of 100 sample paths the deviation has exceeded the threshold and the game calculator was activated
40 times. Comparing the average values for different levels of noise, it is clear that they look similar in
general. The interesting part is the controller times function. It is observed from its average value that
the controller was called for high level of noise for a small number of sample paths during almost all the

battle time.
A better understanding will be reached when certain sample paths are observed for different noise

levels.

100

\\\
90 = 5 \
80 i
00 5 10 15 20
|
70 i time
60 ! Weapons per platform
) 10
50
w8
40
{
N 6 -
36 > 0 5 10 15 20
time
20
g Controller Times
10 =2 v
21r ® ®
0 20 40 60 80 100 g 0
8o 5 10 15 20

Positions of the units

Number of platforms

Position in km

Fire intensities

time
Speed Controis

0.5 / \,\\
NN

5 10 15
time

20

time

Figure 3.3: The Scenario without any Noise

Figures 3.8-3.14 show a couple of sample paths for different noise levels. When the level of the noise is
low there is not a big problem. However as the amplitude of the noise is increased there are problematic
sample paths as shown in Figures 3.10, 3.12, 3.13. It can be asserted in a figurative manner that although
on the average the results are looking good there is a strong standard deviation.

75

Figure 3.4: Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

1%

Figure 3.5: Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

10%

Positions of the units

Number of platforms

100 v 10 S v
\~
90 = 5¢ BN
. -
80 e
00 5 10 15 20
70 time
60 Weapons per platform
10
50+
wr B
40
8
30 0 5 10 15 20
time
20
ﬂE’ Controller Times
10 =04
S40l il |
0 z02 -
0 20 40 60 80 10§ h o
Position in km
Fire intensities
1
0.5
0 . .
0 5 10 15 20 20
time

100

80

70

60

50

40

30

20

Positions of the units

Number of platforms

10 \ v v
= 5F .
\~ et e e et oo s st s st o
o . . N
0 5 10 15 20
time
Weapons per platform
10 <
wr 8
6 R
0 5 10 15 20
time
g Controller Times
= 0.2
201 %
5 B
0
20 40 60 80 1o§ o e P 15 20

Position in km

Fire intensities

5 10 15
time

76

20

Figure 3.6: Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

90%

Figure 3.7: Average Values of the States and Controls over 100 Sample Paths for the Noise Amplitude

130%

Paositions of the units

Number of platforms

100 10 7 v
.
9t e 5 AN
80 | .)
00 5 10 15 20
701 ’ time
80} ! Weapons per platform
/' 10
501 ey / o}
% " - R
40+ 13
i
N 7
30 0 5 10 15 20
time
20
g Controller Times
10 = 0.
8
% 20 a0 60 80 m‘g et
Paosition in km § 0 5 ﬁ1rr?e 15 20
Fire intensities Speed Controls
1 1
o
0.5 405 o \‘\\
™~
0 = 0
0 5 10 15 20 0 5 10 15 20

time

time

Positions of the units Number of platforms
100 T 10 v
X
90 =5 N
80
I 00 5 10 15 20
70 | time
60 J Weapaons per platform
// 10 \\.
50 ——)/ 9 o e
4 wr "
40 8
(7
30 N 0 5 10 15 20
time
20
4 Controller Times
E
10 E
&
% 20 40 60 80 1o§ - Wi
Position in km 0 5 _10 15 20
time
. Fire intensities Speed Controls
0.5
ol—.
0 15

7

Positions of the units

Number of platforms

100 10 -)
%0 = 5 N
80 .
; 0 .
| 0 10 15 20
70 i time
60 ' Weapons per platform
l 10
50 — /
)y o
40 / / 8
7
30 0 10 15 20
time
20
g Controller Times
10 = 2
@
=1 o}
00 20 40 60 80 100§ Y
Q
Position in km 80 ,10 15 20
time
Fire intensities Speed Controls
1
0.5
0
o 20
Figure 3.8: A Sample Path (Noise Amplitude 1%)
Positions of the units Number of platforms
100 10 ;
- e 5 \
N
80
OO 10 15 20
70 time
60 Weapons per platform
10
50 9
B
40 8
7
30 0 10 15 20
time
20
uE’ Controller Times
10 =2 :
21t [§]
0 20 40 60 80 100§ Y
Position in km 80 A10 15 20
time
Fire intensities Speed Controls
1
M
05 /
/
0 5 10 15 20
time

Figure 3.9: A Sample Path (Noise Amplitude 10%)

78

Positions of the units Number of platforms

100 10
90 = 8
80 |
i 6
70F I 0
|
|
60 J
I 10
/
50 Y 9.5
P
40 . 9
8.5
30 0 5 10 15 20
time
20
g Controller Times
10 = 2
)
21t
0o 20 40 60 éo 100§ Y
Position in km 80 5 10 15 20
time
Fire intensities Speed Controls
1 My T T N it 2
}"‘ \q‘/l [\h\ \
05 f [N PR -
/ Y S— L I)
0 4]
0 5 10 15 20 0 5 10 15 20
time time
Figure 3.10: A Sample Path (Noise Amplitude 90%)
Positions of the units Number of platforms
100 10 \
90 =5
S AR
80
00 5 10 15 20
70 time
80 Weapons per platform
) 10
50 / 13
ur
40 8
/
L 7 «
30 . 0 5 10 15 20
time
20
g Controller Times
10} 52 v
21 PE®
0o 20 40 60 8‘0 100E 0 y
Position in km § 0 5 ,1 0 15 20
time
Fire intensities Speed Controls
1 by
0.5
[
0 15 20

Figure 3.11: A Sample Path (Noise Amplitude 90%)

79

Positions of the units

Number of platforms

100 10
50 =5
80
0
0 5 10 15 20
70 time
&0 Weapons per platform
10
50 g et et e
BV
40 8 AN
7
30 0 5 10 15 20
time
20
g Controlier Times
10 52 "
% 1t Ok CEIBRSATINERENIRIN S O
00 20 40 60 80 100E 0
Position in km 80 5 (.10 15 2
ime
Fire intensities Spesd Controls
1 I\ 2
L
0.5 ' ;"“ =1r
- i AR
L',; ‘ mm o valv\hf\l\f\’\(‘#'v\'\’w NVV\"\W,,\J/\
% P 10 5 0 5 10 15 20
time time
Figure 3.12: A Sample Path (Noise Amplitude 130%)
Positions of the units Number of platforms
100 10 \\
al
90 = \
[¢]
801
4 N .
0 5 10 15 20
70 time
0} Weapons per platform
10 ¥
50 9.5 \
o \
40 St .
85 +
30 5 10 15 20
time
20
@ Controller Times
E
10 =2 T
o
29
00 20 40 60 80 100§ 0
Position in km R 5 ,10 15 »
time
; Fire intensities Speed Controls
¥ 2
05 ‘ 21 v
/ P, T
0 . 0
o 5 10 15 0 § 10 15 20
time time

Figure 3.13: A Sample Path {Noise Amplitude 130%)

80

Positions of the units Number of platforms

100 10
S,
90 = st
e
80 1
i 00 5 10 1‘5 20
70 !‘ time
60} | Weapons per platform
/ 10
50 / ol
ur
40 8k
L 7
30 ~ 0 5 10 15 20
time
20
E Controlier Times
101 = 2 v
24 ROOOHO]
0() 20 4‘0 60 80 10()% 0
Paosition in km 80 5 10 15 20
time
; Fire intensities Speed Controls
{ i
0.5 “
i \
0 \\
o 5 10 15
time

Figure 3.14: A Sample Path (Noise Amplitude 130%)

81

3.6 Conclusions and Recommendations

Our main findings are that while average values look good, individual sample paths might be quite"
surprising. One can conclude that the CPC is sensitive to observation noise. The first step to remedy

the noise problem is to implement proper filters in the controllers. After this new experiments must be

run to test the robustness and the effects of the filters on the observations.

82

Chapter 4

Experiment 4: Controller
Performance under Parameter
Variations

4.1 Executive Summary

The purpose is to test how the Controller-Plant-Controller setup (CPC) will react to parameter mis-
matches between the battlefield and the sides as well as to parameter mismatches between the sides.
Assuming that both sides have chosen the game theory as the intelligence behind their controllers, sys-
tematic tests have been performed to investigate its sensitivity, i.e., how strongly the proposed game-
theoretic controller reacts to changes in the parameters. The important conclusion to draw from these
experiments is that even a single parameter can have important effects on the outcome of the battle. It
is therefore very important to be able to estimate the enemy parameters in order to succeed in the battle
simulation.

4.2 Purpose of the Experiment

The purpose is to test how the Controller-Plant-Controller setup (CPC) will react to parameter mis-
matches between the battlefield and the sides as well as to parameter mismatches between the sides.

4.3 Hypothesis to Prove or Disprove
The current differential game technology is affected by parameter mismatches. The purpose of this

experiment is to investigate its sensitivity, i.e., how strongly the proposed game-theoretic controller
reacts to changes in the parameters.

4.4 Experimental Setup

The experimental setup is the same as for Experiment 3 and is described in Chapter 3.

4.5 Experimental Results

The purpose of this set of experiments is to test how the Controller-Plant-Controller setup will react
to the parameter mismatches between the battlefield and the sides as well the parameter mismatches

83

Table 4.1: Different Experimental Setup for Weight Miswatches, Weights on Final Number of Red
Platforms

Red’s weight || Blue has | Blue has | Blue has
20 10 20 40
40 20 40 60
60 40 60 80

between the sides. Assuming that both sides have chosen the game theory as the intelligence behind their
controllers, the investigation starts by looking at weight mismatches between the sides.

4.5.1 Weight Mismatches

If both the Red and Blue sides have chosen to use the game technology and their weights in their cost
functions would be the same, it would not make any sense to run the simulations using the CPC. In that
case there would be a single game and no need for the CPC setup. The difference between the strategies
of the sides is implemented by the difference in the internal weights of the controllers. For the following
experiments the weight differences are implemented as the final number of platforms, exactly in the same
manner as in the case of noisy experiments. There is a constant mismatch between both parties in all the
experiments, Blue has 0.2 assigned to its final numbers of platforms while Red assign 0.1 to the Blue’s
final number of platforms. The weights that are changed on the Blue side, however, are the ones on the
final number of platforms of Red as summarized in Table 4.1.

4.5.2 Experiments with Weight Mismatches

In each experiment summarized in Table 4.1 Blue puts its weights below, at the same level, and above
Red’s weights. This resulted in nine experiments. In Figures 4.1~ 4.3 it is clear that Blue chases for a
longer period of time the Red side when it has higher weights assigned. It is clear from these experiments
that strategies can be assigned by using the weights in the internal games of the controllers.

84

Positions of the units

Number of platforms

100 v v 10
Weight=20 \\\
lilg Solid: R=8 N
Dotted: R<B = 5F AN . T
80 | Dash: R>B -
70 | 0
[} 5 10 15 20
60 time
Weapons per platform
50 - 10 N v
/ X
40 i 8 = m m e e e]
i up
30 ’ 8
7
20 0 5 10 15 20
time
10} @ Controller Times
£ 1
=
0 ’ > B ®
0 20 40 60 80 10 0.5 2 O
Position in km g o) X
] 5 10 15 20
Fire intensities time
1r Speed Controls
1
05¢ 205 \/;QN
0 0 s
0 15 20 [5 10 15 20
time
Figure 4.1: Case 1: Red’s Weight is 20
Positions of the units Number of platforms
100 10
Weight=40
oot Solid: R=8 g
Dotted: R<B = 5 NG~ T T 7 .
80 Dash: R>B S
701 ' 0
| [5 10 15 20
60 | time
] Weapons per platform
501 / _ 10 .
- -
40 e e =
G w8
30 N
5 . o .
20 0 5 10 15 20
time
10 ° Controller Times
E 1
0 3 o
0 20 40 60 80 10 0.5 % ®
Position in km £
g0 y
0 5 10 15 20
Fire intensities time
1 Speed Controls
0.5
o DN
0 10 15 20
time

Figure 4.2: Case 2: Red’s Weight is 40

85

Positions of the units

Number of platforms

100 ¥ v 10
Weight=60 \
80 Solid: R=B N\
Dotted: R<B =5 -
80 | Dash: R>B \
Il
70 i 0
|) 5 10 15 20
60 | time
/ Weapons per platform
50 / 10 P
- ol X
40 A
wr 8 T T T Ty
N
30 K
[}
20 0 5 10 15 20
time
10 @ Controller Times
E "
0 . & O]
0 20 40 60 80 105 0.5 & ®
Position in km ‘2
g 0 "
°c o 5 10 15 20
Fire intensities time
1 Speed Controls
05
o / . s
0 5 10 15 20 5 10 15 20
time time

Figure 4.3: Case 3: Red’s Weight is 60

86

Table 4.2 Parameter Mismatches for the Experiments

Case 1 Plant | Blue Side | Red Side
pkill Blue ; 0.3 0.3 0.1-0.8
pkill Red 0.3 0.1- 0.8 0.3

Case 2
pkill Blue | 0.8 0.8 0.1- 0.8
pkill Red 0.8 0.1- 0.8 0.8

Differential Game Weights for Parametric Mismatch

The running weights for these experiments are the same as in the noisy experiments. The final cost

matrices are given as:

0

0

0

0

QBy = 0
0

0

o

[0

0

0

0

QRy = 0
0

0

Lo

o OO O O o o o O

o O o o o o ©

o

0 00
0 00
-1/5 0 0
0 00
0 00
0 00
0 00
0 00
0 00
0 00
~-1/10 0 0
0 00
0 00
0 00
0 00
0 00

o o o O o o o o

o OO0 o o o o o o

0 ¢
0 0
0 0
0 0
0 0
0 0
40 0
0 0]
0 0
0 0
0 0
0 0
0 0
0 0
20 0
0 0

Exactly as it is done to test the Experiment 3 the weights are only on the final number of the platforms

for both sides.

Experimental Results for Parametric Mismatch

The experiments can be categorized under two major cases:

e The battlefield dictates low probability of kill

e The battlefield has a high probability of kill

In both cases it is assumed that each side has perfect information about their own probability of kill,
but does not exactly know in their internal model the probability kill of the enemy. As summarized
in Table 4.2 experimental results are obtained by varying the probability of kill of the enemy side in
the internal model of both controllers. The results are shown on the following figures under the low
probability of kill and high probability of kill sections.

87

Low Probability of Kill

Positions of the units

Number of platforms

100 10 v
N
%0 = 9 \\
8 N
80 \\
7
1] 5 10 15 20
70 time
60 Weapons per platform
10 e
50 —— / 9
E‘ o o
40 - 8 .
: 7
30 0 5 10 15 20
time
20
g Controlter Times
10 52
o
= 1} ®
0 2 o
0 20 40 60 80 100§ >
Position in km g0 5 10 15 20
time
Fire intensities Speed Controls
1
0.5
0 o "
0 5 10 15 20
time
Figure 4.4: Both sides exactly know the probability of kill 0.3
Positions of the units Number of piatforms
100 T 10 T
a0 9.5 \\
=5 T
.
9 -
80
8% 5 10 15 20
7 time
b
60 [Weapons per platform
; 10 — Y
1 T]
wp
40 i 8t
!
' 7
30 0 5 10 15 20
time
20
g Controller Times
10 =2
o
=1} ®
0 20 40 60 80 100:2 0
Pasition in km 80 5 ,10 15 20
time
Fire intensities Speed Controls
1 1
0.5
ol S
0 10 15 20
time

88

Figure 4.5: Red Underestimates Blue (Red thinks pkillBlue=0.1) pkill:0.3

Positions of the units Number of platforms

100 10 e
8 T
90 = R
6 N -
80
40) 10 15 20
70 time
60 Weapons per platform
10 e S]
50
wr 8
40 ¥
. S—
30 [} 5 10 15 20
time
20
g Controller Times
0} £2
-Lél 1 DB OO O
4]
0 20 40 60 80 10050 . »
Position in km 3o 5 to » »
time
Fire intensities Speed Controls
1 1
05 '
o -
0 5 10 15

time

Figure 4.6: Red Overestimates Blue (Red thinks pkillBlue=0.8) pkill:0.3

Positions of the units Number of platforms
100 10 &
9t \
9ot - -
8} \
801 -
K 70 5 16 15 20
I
70 i time
60 1 Weapons per platform
| 10 —— v v
50 —— / s
40} 8
\v
4
' 7
30 0 5 10 15 20
time
201
g Controller Times
10F = 2 v
29 O® O DX O
0 5,
0 20 40 60 80 100
Position in km 80 5 10 15 20
time
. Fire intensities Speed Controls
1
0.5 =05 \M
0 0 —
o 15 20 0 5 10 15 20
time

Figure 4.7: Blue Underestimates Red (Blue thinks pkillRed=0.1) pkill:0.3

89

Positions of the units

Number of platforms

100 10 O A
90} c 8
6 N
80 | Sl i e
I 40 -
70l | 5 10 15 20
‘ time
60 ! Weapons per platform
| 10 e — S S
50 — /
g o wr 8
40 -
8
30) 5 10 15 20
time
20
g Controller Times
10 =2 T
B .l "
o 3 1 *® *O
o 20 40 80 80 1005 0
Position in km 80 5 10 15 20
time
Fire intensities Speed Controls
1 1
05
0 o N e
0 15 20 15 20
time
Figure 4.8: Blue Overestimates Red (Blue thinks pkillRed=0.8) pkill:0.3
Positions of the units Number of platforms
100 10
90 o5 N
o
80 N]
90 5 10 15 Zd
70 time
60 i Weapons per platform
| 10 = x T
e I
50 ol
wr
40 8t
7 .
30 0 5 10 15 20
20 time
g Controlier Times
10 =2 v T
o
=1 * B ¥ O
0() 20 40 60 8‘0 100% o
Position in km 8o 5 ,m 15 20
time
Fire intensities Speed Controls
1
1
" / \
0 e
0 5 10 15) 20
time time
Figure 4.9: Both Sides Underestimate (Red thinks pkillBlue=0.1 similarly for Blue) pkill:0.3

90

Positions of the units Number of platforms

100 10
9% e 5 e
80 | B
| % 5 10 15 20
70 ! time
60 i Weapons per platform
: 10
50+ |
} wr 5
40+ {
Li
0
30) 5 10 15 20
time
20
g Controlier Timss
10 =2
21 Ok B % D% O
0 2
0 20 40 80 80 100€ 0 -
Position in km 80 5 ,10 15 20
time
. Fire intensities Speed Controls
0.5
0
0

time

Figure 4.10: Red Underestimates Blue (Red thinks pklllBlue 0.1) and Blue overestimates Red (Blue
thinks pkillRed=0.8) pkill:0.3

Positions of the units Number of platforms
100 10 = v
g
af [
80 P .
6 \\
80 et
40 5 10 15 20
70 time
60 Weapons per platform
10 s S T
501 8
up
40 6r -
4
30) 5 10 15 20
time
20
g Controller Times
10} =2
]
o - 1} O% O %
0 20 40 60 80 100E 0 y
Position in km 80 5 10 15 20
Fire intensities
1
0.5 205
0
Q 20

Figure 4.11: Blue Underestimates Red (Blue thinks pkillRed=0.1) and Red overestimates Blue (Red
thinks pkillBlue=0.8) pkill:0.3

91

Positions of the units

Number of platforms

100 . 10 -
A
90 8 ‘
80 | N
6
70 i 0 5 ﬁ::e 15 20
60 | Weapons per piatform
j 10 S . .
50 “w 9
ar
40 g
/ 8
N 7
30) 5 10 15 20
time
20
g Controlter Times
10 &2 . -
24 L€ ©
0 £
0 20 40 60 80 100€0
Position in km 8 5 ti:r(\]e 5 20
Fire intensities Speed Controls
1 r
0.5
A,
0 -
0 5 10 15 20
time
Figure 4.12: Both Sides Overestimate (Red thinks pkillBlue==0.8 similarly for Blue) pkill:0.3

92

High Probability of Kill

Positions of the units Number of platforms
100 10 & ¥
AN
90 = 5 AN
80 |
: % 5 10 15 20
70 i time
60 ! Weapons per platform
i 10 - "
50 — o
, 9
77// " \
40 8 .
7
30 0 5 10 15 20
time
20
°E’ Controlier Times
10 =2 v
21} &® ©
% 20 40 60 80 10080
Position in km 80 5 10 15 20
time
; Fire intensities Speed Controls
1
0.5 105 LA
o . 0 EES——
o 15 20 0 5 10 15 20
time
Figure 4.13: Both sides exactly know the probability of kill 0.8
Positions of tha units Number of platforms
10 v
100 \\
90 = Sp N
80 S
[o0 5 10 15 20
70 | time
60 Weapons per platform
! 10 —————
5 |
R s
40 l
b 6 A
30) 5 10 15 P3)
time
20
8 Controller Times
10 = 2 v
21 *¥ % O O
C'0 20 40 60 80 100%3 0
Position in km 80 5 410 15 20
time
. Fire intensities Speed Controls
1
05 =05 N
0 N . 0 T
0 5 10 15 20 0 5 10 15 20
time time

Figure 4.14: Red Underestimates Blue (Red thinks pkillBlue=0.1) pkill:0.8

93

Positions of the units

Number of platforms

100 10 < v
T
90 e 5l - - i]
801 ;
| 00 5 1‘0 15 20
70 time
60 Weapons per platform
10 <
50 o
i nn
40 . 8
7
% 0 5 10 15 20
time
20
g Controller Times
10 = 2
] .
= 1F ¢
0 8 o he
o 20 40 60 80 100 §
Position in km 30 5 10 15 20
time
Fire intensities Speed Controls
1 i
0.5 ~
g
o /. NA
0 5 10 15 20
time

Figure 4.15: Red Underestimates Blue (Red thinks pkillBlue=0.4) pkill:0.8

Positions of the units

100

90

80

70

80

50

40

30

20

20 40 60 80
Position in km

Fire intensities

Number of platforms
10 \
AN
= 5t \
0
0 5 10 15 20
time
Weapons per platform
10 <
9
wp
8 b
7
0 5 10 15 20
time
2 Controller Times
£
5
= 1 Q
£ 0
[~
100 30 5 10 15 20
time
Speed Controls
20

5 10 15
time

Figure 4.16: Blue Underestimates Red (Blue thinks pkillRed=0.1) pkill:0.8

94

Positions of the units

Number of platforms

100 10 -
90 = 5 A .
80 | ST
| 0O 5 10 15 20
70 ‘ time
80 . Weapons per platform
i 10
50 — 9
Yy
a0 8
7
30 0 5 10 15 20
time
20
g Controiter Times
10 52 v
o
=1r Q
00 2‘0 40 60 60 100 % 0
Position in km 3o 5 10 15 2
time
} Fire intensities Speed Controls
1r
0.5
0 =
0 5 10 15 20
time

Figure 4.17: Blue Underestimates Red (Blue thinks pkillRed=0.4) pkill:0.8

Positions of the units Number of platforms
100 v 10 o
N
90 -8 S
61 o
80 e
40 5 10 1A5 20
70 1 time
60 J Weapons per platform
10 —— g
50 - of
ur
40 8t
{
7) N
30 0 5 10 15 20
time
20
g Controller Times
10 = 2 v
@
=1 ¢}
0 20 40 60 80 100 £ 0
Position in km § 0 5 10 15 20
time
. Fire intensities Speed Controls
0.5
0 —
i 15 15 20

Figure 4.18: Both Sides Underestimate (Red thinks pkillBlue=0.1 similarly for Blue) pkill:0.8

95

Positions of the units

Number of platforms

100 10
C:“
%0 = 5 N B o
801
00 S 10 15 20
70 time
80 Weapons per platform
| 10 <
50 / R - —
9
—’W "
40 A 8 —]
7
30 0 5 10 15 20
time
20
g Controfler Times
10+ =2 -
5 .
o ? 1r o]
0 20 40 60 80 100§ 0 -
Position in km § 0 5 ,10 15 20
time
] Fire intensities Speed Controls
1
0.5 205 L
0 > 0 —
o 5 10 15 20 [5 10 15 20
time time

Positions of the units

Figure 4.19: Both Sides Underestimate (Red thinks pkillBlue=0.4 similarly for Blue) pkill:0.8

Number of platforms

100 v 10
AN
90 = 5 \‘\
80 B ——
1 00 5 10 1‘5 20
70 time
60 Weapons per platform
| 10
50 B /
/ wr 8
40
i 6
30 1] 5 10 15 20
time
20
g Controller Times
10 = 2 T v v
21 3 O
0o 20 40 60 80 100E 0
Position in km 30 5 10 5 20
time
. Fire intensities Speed Controls
1
0.5 205 \/\Q/~\
AN
I
0 o
o 15 20 0 5 10 15 20
time

96

Figure 4.20: Both Sides Underestimate (Red thinks pkillBlue=0.4 Blue thinks pkillRed=0.1) pkill:0.8

Positions of the units Number of platforms

100 e e . 10p - e
90 =8
6 .
80 S
*o 5 10 15 20
70t

time

60

|
i
|
50 — / R
L -
1
1
t

Weapons per platform

40 8
7 " N .
30 0 5 10 15 20
” time
g Controller Times
10F = 2
a
21} o
0 £,
0 20 40 60 80 100 &
Position in km g0 8 ~10 » »
time
Fire intensities Speed Controls
1 1
0.5
0
0 10 15 0

time

Figure 4.21: Both Sides Underestimate (Red thinks pkillBlue=0.1 Blue thinks pkillRed=0.4) pkill:0.8

4.6 Conclusions and Recommendations

It is clear from Figures 4.4-4.21 that the parameters have a significant impact on the differential game.
Whenever the Red side underestimates as in Figure 4.5 and 4.14, it takes less evasive action and directs
itself towards the target. On the other hand, whenever there is overestimation for the Red side as in
Figure 4.6, more evasive action is taken. Similar remarks follow for the Blue side if the parameters are
underestimated by the Blue side as in Figures 4.7, 4.16 and 4.17. Blue starts chasing red earlier than it
does in the case of exact estimation or overestimation of Figures 4.4, 4.8 and 4.13. The remaining figures
give an idea about the combination of different types of parameter mismatches.

The important conclusion to draw from these experiments is that even a single parameter can have
important effects on the outcome of the battle. It is therefore very important to be able to estimate the
enemy parameters in order to succeed in the battle simulation. As a future research path the parameter
estimation from the enemy actions could be added to the difficult task of weight estimation form the
enemy actions.

97

;
|
!
|

98

Chapter 5

Experiment 5: Controller
Computational Complexity

5.1 Executive Summary

The purpose of experiment 5 is to test Hypothesis 5: The computational complexity of the differential
game technology based controller, combined with an extended Kalman filter or a nonlinear observer,
increases quadratically as a function of the number of units and linearly as a function of the mission
duration.

A number of experiments have been performed to test that Hypothesis.

In the set of experiments, both the plant and internal models are the same, given by MDCM. In a
first set of experiments we increase the number of units in the scenario while the mission objectives and
duration are kept constant. In a second set, the mission duration is increased, while the mission objectives
and the number of units are kept constant. The computation time and the number of iterations required
for the computation of the control law to converge were recorded in both cases.

Our main conclusions are that the computational time required to reach the convergence criterion
depends on many factors, such as the units categories, the number of units, initial trajectories, weights in
the cost function, step size in our numerical procedure and the manner of engagements as well as initial
positions and target locations. Similarly the number of iterations required to reach a convergence criterion
depends on the same factors. From our experimental results, major factors which affect the computational
time are the number of units and mission duration. As expected from theoretical considerations the
computational time of the controller increased quadratically as a function of the number of units. We
also saw that it increased linearly as a function of the mission duration, while the number of iterations
remained relatively constant as a function of the number of units.

5.2 Introduction

A number of experiments have been performed to test the following Hypothesis : The computational
complexity of the differential game technology based controller, combined with an extended Kalman filter
or a nonlinear observer, increases quadratically as a function of the number of units and linearly as a
function of the mission duration.

In these experiments, both the plant and internal models are the same, given by MDCM. In a first set
of experiments we increase the number of units in the scenario while the mission objectives and duration
are kept constant. In a second set, the mission duration is increased, while the mission objectives and
the number of units are kept constant. The computation time and the number of iterations required for
the computation of the control law to converge were recorded in both cases.

99

Table 5.1: Data For One vs. One

Blue Red
Unit categories fighter interceptor
Initial no. of platforms 10 10
Initial no. of weapons 10 10
Initial position (20,50) (50,82)
Target location (80,50) (50,20)
Run. cost | Ter. cost | Run. cost | Ter. cost
Weights Dist. to target 0.1 0 0.1 0
in Velocity command 800 0 800 0
cost Firing intensities command 200 0 200 0
function No. of platforms 0 0.2 0 20

5.3 Experiment 5.1: The Number Of Units Is Increased With
Fixed Mission Duration

In this set of experiments, the mission duration is kept constant at 20 minutes. In the convergence test
the control change is set to 0.01 and the step size 0.5 is used.

5 experiments have been done for each of the following cases: 1 vs. 1, 2 vs. 2, 3 vs. 3, 4 vs. 4
and 5 vs. 5. In these 5 experiments for each n vs. n case (1 < n < 5), the units categories, initial
conditions, target locations and nominal trajectories as well as the weights in the cost function may vary.
The computational time and the number of iterations are recorded for each experiment.

5.3.1 One vs. One

Five different experiments were performed in this case. Here we report on one example of those five
in detail. Table 5.1 summarizes the pertinent information for the two opposite forces in that specific
example.

Figures 5.1 - 5.5 respectively show the initial trajectories, the control update at each iteration, the
Nash solution of trajectories and the corresponding firing intensities as well as number of platforms.

The computational time required to reach the convergence criterion in this experiment is 141.935
seconds, the number of iterations is 13.

In the other four experiments, the computational time required to reach the convergence criterion was
around 140 seconds and the number of iterations ranged from 13 to 16.

100

B1-fighter R1intercaptnr
100

80
70

60+

2 : ime:
ey S Time:

i 20.0 min
Bitarget

40

30

R
20 X

Ritarget

0 L s . . n . L L L s
0 10 20 30 40 50 60 70 80 90 100

&Y (em)

Figure 5.1: Initial Trajectories In One vs. One

° o
> = -
- .

L

Norm of Controt Update |} Su,
=
'S

0.2 p

)] 2 4 8 8 10 12 14
lteration i

Figure 5.2: Control Update In One vs. One

101

B1:fighter R 1:interceptor

100
90+
80
701
60}

2]
ﬁ()50 o (

Sl

X
Biltarget

Time:
20.0 min

40

20

Figure 5.3: Nash Trajectories In One vs.

o8r

B
06
04}

02

1

X
Ritarget

L L . s . : L L . s

10 20 30 40 50 80 70 80 20 100
£ (km)

One

B1:blu, Rt:red

08f
R
Togk

CAr

.
2 4 8 8 10 12 14 16 18 20
time {min)

L i L s L L ¢ L }

2 4 [8 16 12] 16 18 20
time (min)

Figure 5.4: Nash Firing Intensities In One vs. One

102

B1:biu, R1:red

10———————\
o .
“B 6
45
Z..
0 1 L s L 1 : ; L L ;
0 2 4 6 8 10 12 14 16 18 2
time {min)
12r
A
A\
8l
ﬂR [
4
2-
0 s i L 1 L 1 1 ! L)
0 2 4 & 8 10 12 14 18 18 20

time {min)

Figure 5.5: Nash Number Of Platforms In One vs. One

Table 5.2: Data For Three vs. Three

B1 B2 B3 R1 R2 R3
Unit categories bombers | bombers | grounds | bombers | interceptors | grounds
Initial no. of platforms 10 10 10 10 10 10
Initial no. of weapons 10 10 10 10 10 10
Initial position (20,53) (20,50) (45,47) (80,53) (80,50) (55,47)
Target location (70,63) (80,52) (53,48) (30,63) (20,48) (43,46)

5.3.2 Multi-units Case

We also report on one of five 3 vs. 3 experiments as an example for the multiple units case.

Table 5.2 summarizes the pertinent information for the two opposite forces in that specific example
and Table 5.3 shows the weights in the cost function in that example. The manner of engagement in that
example is: Bl and B2 are allowed to attack R1 and B3 is allowed to attack R2. R1 and R2 are allowed
to attack B2 and R3 is allowed to attack B3.

Figures 5.6 - 5.10 show respectively the initial trajectories, the control update at each iteration, the
Nash solution of trajectories and the corresponding firing intensities as well as number of platforms.

The computational time required to reach the convergence criterion in this experiment is 315.214
seconds, the number of iterations is 11.

In other four experiments, the computational time required to reach the convergence criterion was
around 320 seconds and the number of iterations ranged from 9 to 14.

103

Table 5.3: Weights In Cost Function For Thiee vs. Three

Running cost Terminal cost
B1 B2 B3 R1 R2 R3 B1 B2 | B3 | Rl | R2 R3
Distance to target 0.05 | 0.05 | 0.05 | 0.05] 0.05 | 0.05
Velocity command 600 600 600 600 600 600
Firing intensities command | 100 100 100 100 100 100
No. of platforms 0.05 1 05| 10 | 0.5 | 0.05

1

g(z)

00

70

501

401

30

20

B1:bomber,B2:bomber,B3:ground, R 1:bomber RZ:interceptor, R3:ground

Time:
20.0 min

L L "

10 20 30 40 50 80 70 80 90 100
£ (k)

Figure 5.6: Initial Trajectories In Three vs. Three

104

2

=
>
T

Norm of Control Update |} du.
P
o

il I I I 1 1

0 1 2 3 4 5

tteration i

Figure 5.7: Control Update In Three vs. Three

B1:bomber,B2:bomber,B3:ground,R1;bomber,R2:interceptor R3:ground

80
701
60

3
E()50

401

30F

20

[L L L L s A

o B2 X Time:

B2 20.0 min

L s s

(1] 10 20 30 40 50 60
£ fkm)

70 80 80 100

Figure 5.8: Nash Trajectories In Three vs. Three

105

81:bl, B2:cyn, B3:gm, R1:red, R2:mag, R3yw

08+

041

02

0 " L L L h) L L 1)

0 2 4 8 8 10 12 14 16 18 20
time (min)

o8r

R
o6k
04r

0.2}

time (min)

Figure 5.9: Nash Firing Intensities In Three vs. Three

106

Bi:blu, BZ:cyn, B3:gm, R1red, R2:mag, R3:ylw

Y\B 6
ne
2t
0 I 1 1 1 i i 1 1 1 i
0 2 4 [8 10 12 14 16 18 20
{ime {min}
12¢
10! -
BN
8k \
. \
L \\
4
2
0 L i A i 3 | i L i I
0 2 4 6 8 10 12 14 16 18 20

time (min)

Figure 5.10: Nash Number Of Platforms In Three vs. Three

5.3.3 Multi-units Case And Computational Complexity

Similar experiments were performed in the 2 vs. 2 through 5 vs. 5 case. For a fixed number of units, 5
different experiments have been done. The computational time as well as the number of iterations were
recorded in each experiment. Figures 5.11 and 5.12 show how the computational time and number of
iterations required to reach a convergence criterion change as the number of units is increased respectively.

While the number of iterations remains close to constant for the 2 vs. 2 to 4 vs. 4 cases, the compu-
tational time on the average shows a quadratic growth in these cases. The computational time decreases
for the 5 vs. 5 case because the 5 vs. 5 engagement is different and simpler than the one which was used
for the other cases which all followed a similar pattern. Clearly the computational time will depend on
the degree of interaction and the involvement of the units in battle and the case of 5 vs. 5 verifies an
expected decrease in the computation time for a simpler scenario.

107

Computationat Time Changes as the Number of Units is Increased from 210 10
2000 ¥ T T T T T T

1800+ k

1400 i

=]
@
=]
T
.

Computational Time
=1
S
=
.

800 . i
600
L]
400} .
. .
1
200} .
0 ‘ .
2 3 4 5 7 8 9 10

8
Number of Units

Figure 5.11: The Computational Time Changes As The Number Of Units Is Increased

Number of terations Changes as the Number of Units is Increased from 2 to 10
24 T T T Y

¥ ¢ T

&
T
L

Number of iterations
>
+

144 . . . i
. .

12} . . 4

10 R
.

g L ; i s L i)
2 3 4 5 & 7 8 g 10
Number of Units

Figure 5.12: The Number Of Iterations Changes As The Number Of Units Is Increased

108

Computational Time Changes as the Mission Duration is Increased from 10 min. o 50 min.

y
A
180 //
e
1701
@ 1601
£
£
H
E
§ 150 /
)
3 o
g .
Q [-
9140
120r Ve
/
120+ / B
10 , : .
10 15 20 2 30 3 40 45 50

Mission Duration

Figure 5.13: The Computational Time Changes As The Mission Duration Is Increased

5.4 Experiment 5.2: The Mission Duration Is Increased While
The Number Of Units Is Kept Constant

In this set of experiments, the number of units is taken fixed, as 2. For each experiment, the mission
duration varies from 10 to 50 minutes. For the convergence test the control change is set to 0.01 and
step size is 0.5. Figure 5.13 records the changes in the computational time as the mission duration is
increased. It roughly increases linearly with the duration time.

5.5 Conclusions

The computational time required to reach the convergence criterion depends on many factors, such as
the units categories, the number of units, initial trajectories, weights in the cost function, step size in
our numerical procedure and the manner of engagements as well as initial positions and target locations.
Similarly the number of iterations required to reach a convergence criterion depends on the same factors.
From our experimental results, a major factor which affects the computational time is the number of
units and mission duration. For our experiments the computational time of the controller increased
quadratically as a function of the number of units and linearly as a function of the mission duration,
while the number of iterations itself remained relatively constant as a function of the number of units.

109

110

Chapter 6

Experiment 6: Controller with a
Kalman Filter for Estimation

6.1 Executive Summary

In this chapter, we present an algorithm based on the Extended Kalman Filter (EKF) for state estimation
when enemy inputs are unavailable. We show the overall structure of the estimation scheme through a
block diagram. We present the implementation of the algorithm for the air operation theater through a
flowchart. We also present the results of simulation experiments.

6.2 Purpose of the Experiment

The purpose of the experiment is to show that the current differential game technology, combined with
an extended Kalman filter provides an effective means of countering the enemy actions under idealized
situations with perfect information about enemy initial conditions and objectives, but with noisy mea-
surements of a subset of the enemy state.

Description: Both the plant and internal models are the same, i.e., the MDCM (Mission Dynamics
Continuous Model). Increasing levels of noise will be added to the state variables when constructing
the observed state variables (the output variables). Some of the enemy state variables (weapons per
platform first, and number of adversary platforms next) will be removed from the set of output variables
thus making them unobservable. The control actions of the Blue and Red teams are generated by the
proposed game theoretic algorithm.

6.3 Hypothesis to Prove or Disprove

The current differential game technology, combined with an extended Kalman filter provides an effective
means of countering the enemy actions under idealized situations with perfect information about enemy
initial conditions and objectives, but with noisy measurements of a subset of the enemy state. The
algorithm based on EKF adequately estimates the unknown red state in the presence of process and
observation noise.

6.4 Experiment Setup and Experiment Design

In this report, we present an algorithm based on the Extended Kalman Filter (EKF) for state estimation
when enemy inputs are unavailable. We show the overall structure of the estimation scheme through a

111

block diagram. We present the implementation of the algorithm for the air operation theatre through a
flowchart. We also present simulation results. The theoretical description of the EKF is given in [1] and
[2]. The block diagram of the approach is shown in Fig. 6.1.

The inputs to the filter are the output vector yx of the plant and the input vector u¥ for the friendly
unit, the outputs of the filter are estimates 2/, and ﬁkR/ x41 Of the state vector zx and enemy input vector

A
Uy, -

112

Extended Kalman filter for estimating state X, and enemy input u,f

w(i) v(z)
g;x t)
W) x(t) »()
L - Integrator > g + >
f
L)
> < Continuous-time Plant
\ y
Sampler Sampler
uf yk
y
AR
Advance Ui
| A
Py
Kia
¥, + V-y;ﬂl
A A kel
K (I-H K C
o Y 5‘/«+1/k+1 %f/k ~ 59(/1(. v
L Blf +>_> Delay A B »_><">——>» fj{k+1 Yirkat
Y A
Xkik
- Bf /Ii) >
Discrete-time Extended KalmanFilter

Figure 6.1: Block diagram of the Extended Kalman Filter

The flowchart of algorithm is given in Fig. 6.2.

113

Set: At =0.1min ¢, = 0,¢, =20min, k=0
(0P tg<t<t; forplant
£(0), 4% (0), P (0) for Kalman filter

W and V noise covariance matrices

\

4
Given x, =x(¢t,)=x(A*k) and

uB(t),uR(I),te (te,ty]=TAt ¥ kA * (b +1)], compute
Xt =X) =N FEAD) and Ve = W) = AN *(k+1))
andset up =u’(t,)

!

~ ~R B
Given Xk/k>Yk/k+1 apd ¥+» compute

i _ O Gyttt i) B“B_af(ﬁk/k»ufﬁ/f/kﬂ) ER_af(ik/k,ufﬁf/kH) H _ 98Ce/i)
k — ox ' 4 auB ME T auR T ox

A =™ BY =18 e Bldr, BY =) " Bldr,H, = H,

Compute Xk =AXk +B/§ uf
Residual: pp =y, —~H (4%, +B0w)

Py = AkPk/kAk +W

Kie1 =Pk +Hk+1V_1Hk+l)_1Hk+lV—l

Pk/k+1 =B Hpp(V + Hy i Py Han)” Hk+lBk !

P&k =[P + HinlV ™ Hyyy = PO BE (BE B BE) ™ BE Byl
Pk+l/k+1 = P e P BR (BE Py BO™

Pk+1/k+1 'Pku/Rku:IBk P (Ph + HyolV Hy) ™

u® ufx ! -1
Kk+1 =Pk HienV

i
i e

The EKF has been combined with the Simulink game theoretic controller scheme to test the filter as

114

Compute: Unknown input estimation

K
Jkrt & L

'

Compute: State Estimation

- - s % 8 B R T I3 wt
Xpoma = A +Byu/ + B, i + Ko, (I-H B/K).,

* ow

Tk +1

yes

k=k+1

no

Figure 6.2: The flowchart of the estimation algorithm

a closed-loop device as in Fig. 6.3.

abym 5%
Jﬂl or
} — uc e HeTLEd
Toped b cb v i N
R Canstants _@
N
 uB_star Z¢10-Ordet
2 Seoped _P\ i
uB ,
uB s ~ ' - L(_mrrcu_hrm:g ‘ m[n‘l_p‘;:mi
_f ufl phs y Jo' U i y
Tanstand? f},\“m.ﬂ..mw’.,ﬂ S iprhant S en
Blue Cantrol Mo o A
e L e B
S-Function?
W
Ta Whrkspacs2 ¥ St
medrantmocde it . -~
o m D
D Constantd l]
™ "
~ R sta
g R \'TR" Seoe
™ I o
orm della
rorm_deitas DRI I
A b To Voorkspace Math Dot Product
4R pius IR gt Norksp
Constant?

Stop Sirnuiation

Funcon
Red Control Made 5 .
formds s

Ralatonal

Operator Constant

116

Figure 6.3: Closed-loop EKF combined with the game theoretic controller

-

-
i

e

S

&

T

&

b

6.5 Experiment Results and Analysis

I- NO NOISE
v=0

Blue states, and red states (observed (solid) and estimated (dotted)) are presented in Fig. 6.4.
respectively,

117

— - exact

— observed
80 T 64 T 105 estimated
621
70 h
60
60 4
o & o g,58 I
np s
250 1 2
© ©
Qe m“;_v
56
40 b
54F
30 E
52
20 . 50 ' 6 L
0 10 20 0 10 20 0 10 20
time {min.} time (min.} time {min.)
64 T 80 Y 16 T
75+ b
62 E 14 4
701 k
60 g 12 4
65+ 1
o8 i i 10 E
L4 ocJ!ﬁO we
hel b= °Q
5 H & :
s -4 L i =
“Feg af55 = g :]
'
50 1 !
54 1 6 ! 1
\
45+ k A
52 E 4 i
40} 1
50 - 35 ‘ 2 .
0 10 20 0 10 20 0 10 20
time {min.) time (min.) time (min.)

Figure 6.4: Blue states, and red states

I1I- MAXIMUM SENSOR NOISE

Maximum size of gaussian sensor noises is considered. The maximum size random noise is 1% of the
operating point for the blue states, and 5% of the operating point for the red states. Blue states, and red

states {observed (solid) and estimated (dotted)) are presented in Fig. 6.5. respectively,

118

(observed (solid) and estimated (dotted)), no noise.

— exact

-—- observed
80 : 66 : 10.5 estimated
70
60+ -

o & A

S

B s0f

©

[

8 E
401 E
30
20 y 48 ’ 6 +

0 10 0 10 0 0 10 20
time {min.) time (min.} time (min.)
70 T 90 T 16 T
14+ k
651
i 12t E
il
60}
I 10}F— 4
%7 A4 = i
e 8 o
S] ‘; ! & ‘
© - i «. !
un A 8 L i B
55 i
}
!
it 6+ N 1
[» : N
| N — - —
504
4t J
45 ’ 2 L
0 10 0 10 20
time (min.) time (min.) time {min.}

Figure 6.5: Blue states, and red states (observed (solid) and estimated (dotted)), maximum noise.

For a sample game, the results are given below. The enemy control input is given manually. The goal

in the game is as follows;

The blue interceptors try to kill as many red bombers as possible and to reach the target, and The
red bombers try to preserve their own platforms and to reach the target.

119

B1:interceptor,R1:bomber

70

601

@ Time:

I \
50 ' x 20.0 min

Target of B1
40

30
1

201 X
Target of R1
10t

0) L \ . L .))))
0 10 20 30 40 50 60 70 80 90 100

£ (iem)

Figure 6.6: Trajectories of units

6.6 Conclusions and Recommendations

The EKF algorithm is capable of estimating the states in the presence of process noise as well as sensor
noise in different size. The estimates of the enemy inputs are too noisy to be useful in themselves. Luckily,
we only need the states.

The Matlab code for the EKF has also been combined with the Simulink block for the game theoretic
controller.

The controller scheme uses the state estimates rather than observed states.

The scheme has successfully been implemented for both open-loop case and closed-loop case.

As n® is not observed, a small error in the estimation may occur. The estimated enemy inputs
(velocities and firing intensity) are only used for the state estimates not for feedback. Therefore, the
fluctuations in the input estimations do not cause much error in the estimated states.

120

B1:blu, Rited
1.2+

08
e
04

0.2

12

0.8
e
0.4

0.2

Figure 6.7: Speed controls
B1:blu, R1:red

121

B8
To.6f

041

0.8

R
0.6

0.2

20

0 1 L 1 . L 1 L L I
8

10 12 14 16 18

Figure 6.8: Fire intensities

121

20

12

10

B1:blu, R1red

L ! 1 L

8 10 12 14
time (min}

16

20

i i L 1

8 10 12 14
time {min)

Figure 6.9: Number of platforms

B1:blu, Rt:red

18

20

16

20

i 1 L 1

Figure

8 10 12 14

6.10: Weapons per platform

122

16

20

Bibliography

[1] Malisoff M. A. and Tanikawa, A. (2000). Kalman filters to estimate states and enemy inputs, written
report, Wash. U., St. Louis.

{2] Darouach M., Zasadanski, M., Onana A.B., and Nowakowski, S. (1995). Kalman filtering with
unknown inputs via optimal estimation of singular systems. Int. J. of Systems Science, Vol.26, No.10,
pp.2015-2028.

123

124

Chapter 7

Experiment 7: Controller Applied to
a More Realistic Plant

7.1. Executive Summary

The purpose of this experiment is to observe the effect of the discrepancy between internal and plant
models in a closed-loop setting. The internal model is a reduced-order ODE model, called the Mis-
sion Dynamics Continuous-time Model (MDCM 3.0}, and the plant model is a full order ODE model,
abbreviated as EPMDM, which exactly describes the evolution of expected values in PMDM.

The hypothesis is that the current differential game technology would provide an effective means
of countering the enemy actions, who may be either following the Nash solution or using some simple
heuristic strategy, when noise-free state measurements are available, in spite of the mismatch between
the plant and the internal models.

It is concluded that approximating the plant model with a lower order internal model does not cause a
significant difference in game results, as long as the engagement terminates before one side is completely
wiped-off.

7.2 Purpose of the Experiment

The purpose of this experiment is to observe the effect of the discrepancy between internal and plant
models in a closed-loop setting. The internal model is a reduced-order ODE model, called the Mission
Dynamics Continuous-time Model (MDCM 3.0) (see Chapter 1 and its appendix), and the plant model is
a full order ODE model, abbreviated as the EPMDM, which exactly describes the evolution of expected
values in the PMDM [2] (see also Chapter 1).

In the Experiment Plan [1] the hypothesis for Experiment 7 is stated as:

The current differential game technology provides an effective means of countering enemy
actions under more realistic situations with perfect information about the enemy.

To understand this statement, we remark that the current controller for our system is based on an
approximation of the actual model, as described in [2]. When the dynamics of the plant are the same as
the internal model used to compute the Nash solution, we know that the current controller is effective.
We now test if this controller is still effective when the plant dynamics are more realistic, while the
controller is based on approximated dynamics.

125

7.3 Hypothesis to Prove or Disprove

The hypothesis is that the current differential game technology would provide an effective means of
countering the enemy actions, who may be either following the Nash solution or using some simple
heuristic strategy, when noise-free state measurements are available, in spite of the mismatch between
the plant and the internal models.

7.4 Experiment Setup

To implement more realistic game dynamics, we use the Probabilistic Mission Dynamics Model (PMDM)
for uncoordinated target selection as derived in [2]. In [2], the model is derived only for combat between
two opposing units, therefore our experiments will only be for two opposing units (Blue and Red). First
we summarize the PMDM.

The number of platforms depend on chance occurrences and are defined by the random variables

xB (t) 4t Lumber of platforms in the Blue unit at time ¢,

XR(t) 4l jumber of platforms in the Red unit at time t.

The initial values are known to be XB(0) = NB, X#(0) = NF. At any given time, the commanders (or
controllers) can observe only the expected values, denoted by

nB(t) < BX2(t)] and n?(t) = BE[X"(t)].

Then by using the standard notation

def

L, m(t) & P{XE(t) = n, X®(t) = m}

for a Markov Process, the evolution of state probabilities are described by the differential equation
11(t) = I(H)Q(1),

where we stack all components of II,, ,, into a vector I, and Q is called the transition rate matrix of the
process. Considering just the Red unit firing on the Blue unit, the loss rate of Blue platforms is defined
by

def
NB(t) = pRPfa(|P — 7|t
where p is the acquisition rate, Py is the probability of kill, ¢ is a function depending on the distance

between the units and 7 is the fire intensity. Then the more realistic plant model, derived in detail in [2],
is

NR
d B B_R B
o1 = AT mzzlmﬂo,m, (1.1)
d NE
R R_B R
ET] = =A n + A mE::l an'O. (72)

We call (7.1) and (7.2) as the evolution of the expected values in the PMDM (EPMDM). The EPMDM
is the plant model and is implemented into the game technology software as shown in Figure 7.1, which
is the Simulink file that simulates the game dynamics. The only change in the software from the MDCM
to the EPMDM is the grey box in Figure 7.1 labeled “Markov Chain Model”. This box calculates the
summation terms in (7.1) and (7.2).

126

S—— O 1D
---------- — Outt
bluecontmode r—
J—— Constants M oL lim [}
\ 3 = trol_limits b
sz uB_star \ ::I controLtimits epmdm_plant
M S-Function1
. > uB unction S~Function
uB_plus >
uB_plus A Markov Chain Model
Constant3 Q
—0
: Blue Control Mode
b 4
deita ub mdom_lgfb_blue < delta, x
S-Function2
redcontmode i x_star n
- n
Constant4
D >
"3 uR_star
R uR
uR_plus uR_pius Scope
Constant2
onstal Red Control Mode porm_deltax .
To Workspace Math Dot Product
Function
.‘ > e normdx_Ves |, mdx_thres
Stop Simulation Relational
Operator Constant

Figure 7.1: Simulink Implementation of EPMDM

Whenever the game needs to recompute the Nash solution, we use the approximated dynamics in
MDCM 3.0, in Appendix 1.12

d g B R

= —-A .
dt e (73)
d p _ R_B
o = A7, (7.4)

That is, we just drop the summation terms in (7.1) and (7.2). The summation terms correspond to
having zero surviving platforms at a certain time ¢. This probability, for either side, will be small at the
beginning of the engagement, but it may grow later. We call (7.3) and (7.4) the internal model, which is
just the MDCM.

7.5 Experiment Results

To test the hypothesis, we must compare the game solutions when the plant model is the EPMDM and
the MDCM, based on the cost components and the total game cost. If the costs do not differ depending
on the plant model we use, then the hypothesis will be verified.

By hypothesis we do not need to add noise to the state variables when constructing observed state
variables, so our experiments rely on perfect information. To perform the experiments, the Blue unit
always uses the game theoretic algorithm (based on the MDCM), and the Red unit uses the following
strategies:

Strategy A: following the Nash solution (based on the MDCM),

Strategy B: a simple heuristic deterministic strategy.

127

The heuristic strategy is one for which the Red unit takes an assigned path and has an assigned time at
which to fire weapons, and Red maintains this course of action no matter what Blue does.

We also use two different scenarios, the cross scenario and the joust scenario. The cross and joust
scenarios are summarized in Table 7.1. The weights are for the quadratic cost function for the nonlinear
game, as described in [3].

Table 7.1: Scenario Description

[[€088 I Jjoust]

‘ [Blue. Red]| Blue Red]
Number of Units 1 1 i 1
Number of Platforms 10 10 10 10
Py 0.8 0.8 0.8 0.8
P 0.5 0.5 0.5 0.5
€M (0)(km) 20.0 50.0 || 200 80.0
£ (0)(km) 50.0 80.0 || 50.0 52.0
Weight: Distance to Target Cost | 0.1 0.1 0.1 0.1
Weight: Running Platform Cost | 0.01 3.0 0.2 20.0
Weight: Speed Cost 200.0 200.0 || 200.0 200.0
Weight: Terminal Platform Cost | 0.0 0.0 0.0 0.0
Weight: Terminal Target Cost 0.0 0.0 0.0 0.0
Weight: Terminal Speed Cost 0.0 0.0 0.0 0.0

The figures are organized as follows: Figures 7.2-7.7 are for Strategy A using the cross scenario,
Figures 7.8-7.13 are for Strategy B using the cross scenario, Figures 7.14-7.19 are for Strategy A using
the joust scenario and last, Figures 7.20~7.25 are for Strategy B using the joust scenario. In these four
experiments, the figures compare the trajectories computed by the game when the plant model is EPMDM
and when the plant model is MDCM. They also compare the game solution for number of platforms,
speed controls, fire intensities and weapons expenditures. Note that the compared trajectories are very
close, so their plots are indistinguishable in most of the figures.

7.6 Analysis

Examining the figures we can see that the game solutions do not appear to differ significantly. This result
is not surprising since the number of platforms on either side decreases only slightly, and we know that
MDCM differs noticeably from EPMDM only when one side approaches to zero platforms (as mentioned
above and in (2]).

To compare the game solutions with different plant models, we have decided to compare the cost
components of the quadratic cost function and the actual game costs. Tables (7.2) and (7.3) summarize
these costs for the experiments using the cross scenario and Tables (7.4) and (7.5) summarize these costs
for the experiments the joust scenario. Omitted from the tables is the terminal cost components which
are zero. We can clearly see with these results that the difference between using the EPMDM and MDCM
for the plant is insignificant.

7.7 Conclusions and Recommendations
With perfect measurement and under closed-loop control, these experiments show that the reduced-order
model, MDCM, provides an effective approximation to the more realistic situation, EPMDM. However,

we remark that in [2] it was shown that as one side’s platforms go to zero, the approximation may not

128

Table 7.2. Cost Components of Objective IP'unction Using cross Scenario

| Blue |
Plant Model Red Control Running Platform Cost Running Control Cost
EPMDM Game -8172.7 1314.6
MDCM Game -8172.6 1316.5
EPMDM Heuristic -6181.1 1788.9
MDCM Heuristic -6184.0 1789.3
[Red |
Plant Model Red Control Running Platform Cost Running Control Cost
EPMDM Game -3164.7 852.3
MDCM Game -3164.5 853.9
EPMDM Heuristic -2088.1 5344.0
MDCM Heuristic -2094.0 5344.0

Table 7.3: Total Costs of Objective Function using cross Scenario

| Plant Model Red Control Blue Total Cost Red Total Cost Game Cost l
EPMDM Game -6858.1 2321.4 -4545.7
MDCM Game -6586.1 2310.6 -4545.5
EPMDM Heuristic -4392.2 -3255.9 -7648.1
MDCM Heuristic -4394.7 -3250.0 -7644.7

Table 7.4: Cost Components of Objective Function Using joust Scenario

| Blue |
Plant Model Red Control Running Platform Cost Running Control Cost
EPMDM Game -7703.0 2117.8
MDCM Game -7698.9 2123.3
EPMDM Heuristic -7141.5 2788.0
MDCM Heuristic -7145.5 2787.9
[Red
Plant Model Red Control Running Platform Cost Running Control Cost
EPMDM Game 1793.3 -2194.7
MDCM Game 1787.0 -2198.6
EPMDM Heuristic 4192.8 -5444.0
MDCM Heuristic 4192.7 -5444.0

Table 7.5: Total Costs of Objective Function Using joust Scenario

| Plant Model

Red Control

Blue Total Cost

Red Total Cost Game Cost |

EPMDM Game -5585.2 -401.4 -5986.6
MDCM Game -5575.6 -411.6 -5987.2
EPMDM Heuristic -4353.5 -1251.2 -5604.7
MDCM Heuristic -4353.6 -1251.3 -5604.9

129

be as good. That is, if we were to have scenarios for which one side has zero surviving platforms, we
may find that the approximation model MDCM may not be as good. Also, the experiments show that
approximating the plant model with a lower order internal model does not cause a significant difference
in game results, when the adversary uses either a game theoretic controller or a heuristic controller.

130

o /’
ol /\“ T
i 7
Zran) R

»

P
aé‘r‘

¥ 0

o
oy

Figure 7.2: Strategy A (cross): Blue Trajectory

Za\ e
s / \
f /
i» Y,
AN
« —

s I) ‘
!
|

< = |
o S iz
5" o~
[~_
—
o T -
S]
Vo

Figure 7.3: Strategy A (cross): Red Trajectory

2,
ol e
MocM
s
5
4
2
H < o s W) "I
e it
12y
- von
w0
o \
" 1
o
2
0 7 ¥ ¥ R)
o i)

Figure 7.4: Strategy A (cross): Number of Platforms

o
s

04

Y ‘ W
s
o3}
Zoa
o]
o]
PR u [

Figure 7.5: Strategy A {(cross): Fire Intesity

131

wh
"
§
o

2,
[e —
8
Lt
“ - epuou
[
E
7 ' TR T
”,
10}
L
Lot
4 P
2|
o 7 ¥ 0 . W W e W

Figure 7.7: Strategy A (cross): Weapons Expenditures

]
Iy (=
5w
»
=l
. =
.
[y
w
o
T e TU B
i)

Figure 7.8: Strategy B (cross): Blue Trajectory

e
ol woo
|
E %o}
£
B
]
x|
(] 2 ¢ R « ®

§Bems
o 5 3 8 8¢

Figure 7.9: Strategy B (cross): Red Trajectory

132

- EpwoM
P SN
B
o® gl
2
(] ? < B 0 w7 e W W m®
v gy
2
- epuou
o} oG
o
"o
4
2}
] 7 O ¥ ¥ W w w w w m
s i

Figure 7.10: Strategy B (cross): Number of Platforms

33,
. - epmoM
ook,
04|
:
s
o
oz}
H < [[[A R R R]
12
' EPvOM ;
[
o
Yos
04
03]
7 v ¥ 0 w1 w ww x

'3
| - o
" eoch
ool
o
Iy
02}
P B S A N R Y
I
spvon
1 ey
, oal
w2
osf
a4
o3
E2 S S T R)

Figure 7.12: Strategy B (cross): Speed Control

[
1]
5
&
4
- o
B vocu
L S S S R S T R T
e
)
o
&
o
- oreou
1 i
T e h e W W W m

Figure 7.13: Strategy B (cross): Weapons Expenditures

133

o
- e
bt MO
£
Sl
s
o H 0 z W e e
o,
o
)
g
&6
—
o0}
0
B v w2 CRE]
e

Figure 7.14:

Strategy A (joust):

s
2 8

8

Figure 7.15:

Strategy A (joust):

Red Trajectory

Brsws, RS rea
epuo
2 Mocu
s 7 0 0 ¥ 0 7 W m
s iy
”
w0
o
e
£ oo
(Y 7 0 O 0 L]
e i

Figure 7.16:

Strategy A (joust): Number of Platforms

L
- -ErMOM
240CH
2 C u TN
Eprion
e
w 7 g s D) W W e w

Figure 7.17: Strategy A (joust): Fire Intesity

134

Figure 7.18: Strategy A (joust): Speed Control

1w, Riee
"
1
P
o
4 Epaou
:
RN v TR W w
u
o
ol
4]
wocK
o
R Voo wo o m w W e m

0] N
MOGM
3
Traf
|
(]) . TR W ow®
B
»] wocu.
)
ém
)
o)
ST e 8 e w w W W A m
[

ey
3 8 %
i

5

Eliomy
€ 5 8 8 3

Figure 7.21: Strategy B (joust): Red Trajectory

135

e
i 2
T
2]
;
=
.
e
5
.
‘
]
i

Figure 7.22: Strategy B (joust): Number of Platforms

12
' Shem
Mook
sl
o
a4
02}
¥ TR TR ® El
vz
\ - Epvon
oo
o8
oe]
adl
2]
7 7 ¥ v e T T LR

"
D
B
o

Epuon
3 Moou
CONY) T w
[
e
i
ol
4

- Epvon
3 [T
o7] §wow

Figure 7.25: Strategy B (joust): Weapons Expenditures

136

Bibliography

[1] Washington University Experiment Plan version 3.0, January 2001.

[2] Markov Chain Combat Models for Attrition Prediction and Mission Control, 1. Tunay, J. Goodwin,
and H. Mukai, presented and accepted for publication in 3rd Int’l Meeting of INFORMS Military
Applications Society (3MAS), (San Antonio, Texas), November 2000.

[3] Mission Dynamics Continuous-time Model version 2.55, H. Mukai, Y. Sawada, I. Tunay and P.
Girard, April 2000.

137

138

Chapter 8

Experiment 8: All Quadratic
Method for Nash Computation

8.1 Executive Summary

The purpose of Experiment 8 is to develop, implement and test the Sequential Quadratic-Quadratic
Method (SQQM) for Differential Games, with two hypotheses of interest. The first hypothesis tests
whether the Nash solution computed through the Sequential Quadratic-Quadratic Method is identical
to the one found using the Sequential Linear-Quadratic Algorithm (SLQM); the second hypothesis tests
whether there is an improvement in convergence time. The issue of speed can become of great importance
in real time applications; moreover, due to the presence of nonlinearity and constraints, a different
approach serves the purpose of validating previous results. The algorithm is based on an iterative method
for computing a Nash solution to a zero-sum differential game with a system of nonlinear differential
equations.

Several experiments on different scenarios, based on both Model 2 and Model 3, have shown the
convergence of the outputs of the SQQM and SLQM algorithms to the same solution. So the first
hypothesis of Experiment 8 is proven true. As for the second hypothesis, namely an improvement in
convergence speed, the conclusion is that the SQQM alone proves to be fast in simple scenarios; if,
however, the starting trajectory and costate estimates are too far from the optimal solution, the SLQM
may be used at first, and then switch to the SQQM once the solution estimate is closer to the optimal
solution. In more complex cases, it is thus advantageous to blend the linear-quadratic algorithm and
the quadratic-quadratic algorithm, taking advantage of both the superior stability of the SLQM and the
superior speed of the SQQM.

8.2 Purpose of the Experiment

The purpose of Experiment 8 is to develop, implement and test the Sequential Quadratic-Quadratic
Method (SQQM) for Differential Games, with the main goal of exploring the possibility of reducing the
computational time with respect to the Sequential Linear-Quadratic Algorithm (SLQM).

The algorithm is based on an iterative method for computing a Nash solution to a zero-sum differential
game for a system of nonlinear differential equations. Given a solution estimate, a subproblem is defined,
which approximates the original problem around the previous solution estimate with a quadratic system
dynamics; then, it is replaced with another subproblem which has a quadratic cost and a linear dynamics.
Because the latter subproblem has only a linear dynamics, a Riccati equation method can be applied
to compute the Nash solution to the subproblem. By adding this Nash solution to the current solution
estimate for the original game, a new solution estimate is obtained. Repeating this process, it is possible
to successively generate better solution estimates that converge to the Nash solution of the original
differential game.

139

8.3 Hypotheses to Prove or Disprove

There are two hypotheses of interest: the first one tests whether the Nash solution computed through
the Sequential Quadratic-Quadratic Method is identical to the one found using the Sequential Linear-
Quadratic Algorithm; the second one tests whether there is an improvement in convergence time.

The issue of speed can become of great importance in real time applications; moreover, due to the
presence of nonlinearity and constraints, a different approach serves the purpose of validating previous
results. The introduction of quadratic terms in the approximation of the plant model along the reference
trajectory is taken into account by adjoining it to the cost function expression, by the classical use of an
additional costate. On one side, the improved approximation reduces the number of iterations required
by the sequential algorithm; on the other side, each iteration requires a longer time to be completed due
to the increase in the order of the model involved. As a result, the Quadratic-Quadratic Algorithm may
provide a better performance in case the scenario is highly nonlinear. When the nonlinearities do not play
a major role, the Linear-Quadratic Algorithm may perform better; this happeuns, for example, when the
initial guess of the costate for the SQQM is far from the optimal one, thus requiring extra time before the
quadratic algorithm can actually start converging. Therefore, an algorithm has also been implemented
that actually blends both the SQQM and SLQM strategies: after starting with the linear algorithm, a
test is routinely made to check whether the quadratic algorithm may take over. This takeover should
happen when the linear algorithm generates a solution estimate that it is sufficiently close to the optimal
one.

8.4 Experiment Setup

In this section, we report in detail the mathematical formulation of the problem at hand and the imple-
mentation of the Sequential Quadratic-Quadratic Method.

8.4.1 Problem and Nash Solutions

Let U denote the set of R™-valued continuous functions on [ty, tf]. Consider a system governed by the
ordinary differential equation,

9 2(t) = flalt),u), t€ liostrl (o) = 20, (51)

where f(z,u) is an R™-valued C?-class function on R™ x R™. Given any control u € U and an initial
state x(tg) = 2o, it is assumed that equation (8.1) defines a unique continuously differentiable solution
z(t),t € [to, t]. The solution z is called the trajectory of the system produced by control u starting from
the initial state zg and it is also denoted by x[u] € X, where X is the space of continuously differentiable
R™-valued functions on [tg,t].

Consider the following game problem. The control function u consists of two parts, u® and u®,
corresponding to the two forces, the Blue and the Red: u = (u?,u®). As the cost function, consider

ty

J(u) = J (P uf) = / g9(x(t), u(t))dt + gr(ts, z(ts)), (8.2)
ty

where g and gy are general nonquadratic functions and are C?-class functions on [to, tf]. It is sometimes

convenient to consider J(u) as a function of both v and z with an additional constraint (8.1) connecting

wand z = zful, i.e., J(u) = Jz[u],u]. The overall game is expressed as the following minimax problem:

J*(to,z0) = m}an mf}zx{J(uB,uR) ’ %r(t) = f(z(t),u(t)), =z(to)= zo}, (8.3)
u” u

where the Red force tries to maximize the cost fanction J(u?,u®) and the Blue force tries to minimize

the same cost function J(u?, uf).

140

The control function u* = (u*?, u*®) satisfying the inequalities
J*B o) < Jw By < TP u (8.4)

for any v = (vZ,v®) in a neighborhood of u* is called a (local) Nash solution to the game problem (8.3).
The optimal value J*(¢g, z0) = J(u*) of the cost function J(u?,u®) is called the value of the game and
it depends on the initial time ¢y and the initial state zg.

The proposed iterative process for computing a Nash solution is of the form

Uiy = Ui + Oy u; (8.5)

with a step size o; € (0, 1]. Here, du; is a solution to the i-th subproblem which is obtained by applying
quadratic (or linear) approximations to g, g5 and f of the original differential game (see Section 3). The
following simple proposition suggests that it makes sense to consider the iterative process of the form
(8.5) for computing a Nash solution. Here, we consider the simplest iterative process which was proposed
in [5] and [6]. The proof of the following proposition can readily be obtained by checking the first order
necessary conditions for Nash equilibrium (8.4). In the following, transposition is denoted by a prime and
the second-order partial derivatives of the function g(z, u) by gez(z,u), gzu (T, u), gus (z, u), and gy, (z,).

Proposition 1. Suppose that the control u* = (u*Z,u*®) is a Nash solution to the problem (8.3). Let
z* = x[u*] denote its state trajectory. Then the zero solution (&u®,u®) = (0,0) is a solution to the
subproblem:

ty
min max / [g(w*,u*) + g (2", u") + g (*, u*)ou + l&zc'gm(:c*,u*)&z:
(SUB &LR to 2
1 I * * 1 ! * * 1 7 * *
+ 5&; Guz (™, 0")& + 5&1: Gau (T, u*)Y0u + Eéu Guu (2", u™)0ul dt

+95 (2" (85)) + (95), (27 (85))dx(ts) + %&U(tf), (95)gq (27 (t5))0(ts)

%&z = folz*, u")& + fulz® u), &(to) = 0} , (8.6)

where, in the interest of brevity, the time ¢ is suppressed.

Observe that the cost function in the above subproblem (8.6) is the quadratic approximation of the
original cost function in (8.3) around the Nash solution (z*,u*) and that the linear differential equation
in the above subproblem (8.6) is the linear approximation of the original differential equation in (8.3)
around the Nash solution (z*,u*). We now define the Hamiltonian H for the differential game (8.3):

H(z(t), u(t), A(t) = g(a(t), ult)) + Mt) £ (z(t), u(t)), (8.7)
where A € X.
Here, it is assumed for all time ¢
Gusur(z(t),uB(t),uR(t)) =0 and gur.s(z(t),vB(t),vR(t) =0 (8.8)
and
fupur(@(t),uB(t),uf(#)) =0 and fyrys(z(t), uB(t),u(t)) = 0. (8.9)

Roughly speaking, assumption (8.8) states that there are no cross product terms between Blue and Red
controls in the cost. Similarly, assumption (8.9) states that there are no cross product terms between
Blue and Red controls in the righthand side of the differential equations. With these assumptions, the
following conditions hold for any time t:

Hyour(z*(£), w2 (1), w* (), *(t)) =0 and Hyrys (z*(8), w2 (8), v B(), *(t)) = 0. (8.10)

141

8.4.2 Sequential Quadratic-Quadratic Method

It is assumed that a solution estimate u; = (uf,uft) is available and we successively improve it. Let us

introduce some notations. Let x, = z[u;] be the trajectory of (8.1) corresponding to u; with z;(tg) = 2o.
Let u = (&u?, &uR) be a small perturbation of u and x[u; + &u] be the trajectory corresponding to control
u; + du with initial condition zfu; + &l(te) = Zo.

In [5] and [6], we proposed an iterative process, whose i-th step consists of solving the following
subproblem, in which the original differential equation (8.1) is linearized around the i-th solution estimate
(us, z;) and the original cost function J is approximated by a quadratic function around the i-th solution
estimate (u;, z;):

ty 1
min max / [g(ari,) + g2 (i,)& + gu(Ti, wi) 0 + - & goa (T, us)dr
suB sl Ve 2
1., 1., 1.,
+ ErSu Guz (T4, w3)0 + 'Z'&B Gouli, Ui)0u + 5511 Guu (@i, ui)bu| dt

+gp(zilts)) + (95), (welts))&(ts) + %&”(tf)l (9£)5p (ilts))dm(ts)

—%&r fo(ma)+ fu(w)b, dn(te) = o} L1

Here, in order to obtain faster convergence than the iterative process based on this linear-quadratic
approximation, we consider the following quadratic-quadratic approximation to the original problem.
Namely, at the i-th step, all the functions including the differential equations are approximated by
quadratic functions around the i-th solution estimate (u;, ;) with z; = z{u;}:

ty 1
min max / [g(a:i, ;) + 9o (@0, 1) & + gu (T, wi)0 + = &' goo (i, us)ox
B u? Vo 2

1
+ %&L'gw(zi,u,v)& -+ %&E'gm(aci,ui)éu 4 iéu'guu(a:i,ui)(h] dt

+g5(@i(ts)) + (95), (@a(tr))ax(ts) + %&E(tf), (95) 4z (zi(tg))Ex(t)

gz<(j) = f(j)z(ajiaui)dr + f(j)u(wi)ui)&j‘ + %f(j)(xi)ui)[&cv&d’ J=42,---,m, &E(tl)) = 0}: (8'12)

where the second-order terms of the j-th right-hand side f() are collected as

FO (@i (62, bu) =
&' fO) (s, us) B + b/ fD (i, ue) b + &' O (w3, w)bu + 6’ FO) o, (s,)

For the sake of notational convenience, the set of n scalar ordinary differential equations in (8.12) will be
compactly denoted by the vector differential equation:

%&E = folxi, wi)be + fulzi, u)du + %F(xi;ui)(&c,&t), &(to) = 0. (8.13)

Although the quadratic expansions in (8.12) of the original functions, f, g and gy, around the -
th solution estimate (u;, ;) approximate the original problem (8.3) better than the linear-quadratic
approximation in (8.11), the i-th subproblem (8.12) obviously is not a linearly constrained quadratic
problem. Such nonlinearly constrained problems usually can not be solved easily. So we replace the
subproblem (8.12) by a linearly constrained quadratic subproblem, whose solution will be the solution

142

to the quadratically constrained subproblem (8.12) in the limit as the solution estimates converge to the
Nash solution provided a certain parameter (costate u € X) is chosen correctly. We thus propose the
following linearly constrained subproblem for a given triple (u;, z;, p;) of control, state and costate with
z; = z|u;], where y; is in the space X of R™-valued C'-class functions on [to, t5):

tf
min max / g(xs, ui) + gz (@i, ui) & + go (24, u3)0u + l&lﬂ/gm(xi, u;) &
uB su® | Jto 2

1 1 1
+§(5u'guz(mi, ul)& + E&E,gzu(miu uz)&" + E&nguu(mh ui)éu

I () 54 _
+§Zu§]) FO @i, wi)dw, 6u) | dt

i=1

+95(zilts)) + (95), (w:(ts))e(ts) + %&”(tf)/ (97).25 (e(t1)) (2)

%&rfﬂ = D _(x;,u)& + fO (2, u:)0u, &) = 0}. (8.14)

Here, ugj) denotes the j-th element of an n-dimensional vector-valued function u; on [tg,tf]. In the
following, the last term in the integrand of (8.14) will be compactly expressed as

S (e 0e) (8, 80)

Observe that the second-order terms of the quadratic differential equations (8.13) are removed from
the differential equations and added to the cost function after taking the inner product with the costate
wi(t). Hence, the differential equations in subproblem (8.14) are linear. Because the cost function was
quadratic in {8.12), this addition of quadratic terms does not change the quadratic nature of the original
cost function in (8.12). The idea of moving the quadratic term of the constraints to the quadratic cost was
first proposed by Wilson [9] for optimization in a finite-dimensional context. The convergence analysis
of the resulting iterative method is carried out by Robinson [7] and [8] in a finite dimensional context.
However, we believe that we are the first to apply the idea to an infinite-dimensional problem in a function
space.

As the costate p; of the i-th subproblem of (8.14), it is quite natural to choose the costate v; cor-
responding to (u;, ;) given by Pontryagin’s maximum principle applied to subproblem (8.11). Indeed,
following Pontryagin, we define the costate v; by

ggm) = —ga(@i(t),ui(t) = Y v (O FD, (w:(t), ua(t)), (8.15)
3=1
vilts) = (97)e(i(ty))- (8.16)

After finding the Nash control &u; for the i-th subproblem (8.14), we update the current control u; to

’U,H_l(t) = ’U,i(t) + a; &Li(t), t e [to, tf], (817)
with a step size o; € (0,1]. We note that a small step size may be necessary at the beginning for the sake

of stability and that the step size of one is recommended towards the end for the sake of fast convergence.
We then compute its trajectory

Tiv1(t) = zluin](t) (8.18)
of the original nonlinear differential equation (8.1).
We then update the costate v; to v;41, which corresponds to the updated costate-state pair (u;r1,Zi41)
and which is computed from (8.15)-(8.16) with ¢ replaced by i + 1. Finally we can use v;4; as the next
costate p;4,. However, in order to stabilize this iterative process, we propose to use

i1 (t) = pi(t) + Bi Vi (t) — pa(t)], (8.19)

143

with a step size ; € (0,1]. When the solution estimate (u;, z;, it;) is far from the local (Nash) optimum
(u*,2*, X*), we may have to choose relatively small 8; and o, in order to keep the iterative process stable.
However, when the solution estimate (u;,z;, ;) is close to the local (Nash) optimum (u*,z*, A*), we
recommend the choice of 3; = 1 and a; = 1 to make the convergence faster. If, instead of using (8.19),
we choose y; = 0 for all iterations ¢, then our iterative process (8.17)-(8.19) reduces to the Sequential
Linear-Quadratic Method proposed in [5] and [6].

Note that both subproblems (8.14) and (8.12) reflect the quadratic approximation of the original
problem (8.3). However, subproblem (8.14) can be solved more readily (by a Riccati equation method)
than subproblem (8.12), because subproblem (8.14) is a linearly constrained quadratic problem while
(8.12) is a quadratically constrained quadratic problem. We expect that the iterative process based on
subproblem (8.14) is locally convergent to a local Nash solution and that the convergence is fast, because
it is established (Robinson [7] and [8]) for optimization in a finite-dimensional space that the iterative
process based on the same idea is locally convergent to a local minimum and that the rate of convergence
is quadratic.

8.4.3 Riccati Equation Method

The iterative method described in the previous section requires a technique for solving a linearly con-
strained quadratic game in order to solve subproblem (8.14). We now present such a technique in this
section. The technique consists of solving Riccati differential equations backwards, the linear differential
equations forwards and the linear adjoint differential equations backwards. This technique is known as
the Riccati equation method.

For the game problem (8.3), the dynamic programming approach requires the value function, which
is defined by

J*(t,z) = m}gnm%x{/tfg(x(r),u(r),‘r)dr+gf(tf,x(tf))

u u

%az(r) = f(z(1),u(r),7), T € [t, 5], z(t) = z} , (8.20)

for t € [to,t7] and z € R™. The value function J*(t, z) satisfies the following boundary condition at time
ty:
J*(ts,2) = gs(t5,2) for any z € R™. (8.21)

Under the assumption of continuous differentiability, a direct application of the principle of optimality
to (8.20) yields the so-called Hamilton-Jacobi-Isaacs (HJI) equation,

~J¢*(t, 2) = min max [J,* (¢, 2) f (2, u,t) + g(z, u, t)], (8.22)
uf Wl

which takes (8.21) as a boundary condition. If there exists a function J*(t, z) satisfying (8.21) and (8.22),
then the HJI equation provides a means of obtaining a Nash solution.

We now consider the following affine-quadratic game:
min max{ Jz; uB u®
uf ol
-(j—tr(t) = At)z(t) + BE®)uB(t) + BROuP(t) + c(t), =z(to) = zo},
(8.23)

144

where

b (4 / , Q) | NP(@) | N (1) z(t)
J(u):/to §<x(t)",u8(t),uR(t)) NB@WY [RBt) | o (UB(t))

NE@Y | 0 | RE() ufi(t)
' ' z(t) 1
GO O “iﬁ? dt+ Solt) Qalty) +alty)rs. (824)
u't{t

Here, we may suppose that the square matrices Q(t), RZ(t), RR(t) and @y are symmetric. Note that the
two control cross product blocks of the quadratic form in the integrand of the cost function (8.24) are
identically zero since we assumed (8.8) in order to simplify the minimax problem in the Hamilton-Jacobi-
Isaacs (HJI) equation (8.22).

Since one can expect that simple arguments in Anderson and Moore [1] also work for min-max
problems, we may assume the value function J*(t, z) is quadratic in 2. Thus, we assume that the value
function takes the following form:

Tt 2) = %Z'S(t)z + k()2 + m2), (8.25)

where k(t) € R",m(t) € R and S(t) € R"*" is a symmetric matrix. We may now solve the HJI equation
(8.22) explicitly (see Basar and Olsder [2]).

Lemma 2. (Riccati equations) The Hamilton-Jacobi-Isaacs equation (8.22) for the linear-quadratic prob-

lem (8.23) has a solution J*(¢,z) of the form (8.25) on [to,ts] x R™ if the following system of Riccati
equations have a solution (S, k,m):

——S(t) + S()A() + A®)'S(t) — {SE)BB(t) + NP()}RE™ l(t){BB(t) S(t) + NB(t)'}
—{S()BR(t) + NR(@)}RE T (1) {BR()'S(t) + N*(®)'} + Q(t) = (8.26)
(t) +A()'k(t) — {S(£)BE(t) + NB(t)} R~ (t){ B (t) k(t)+rB(t)}
~{S(t)BR(t) + NR(t)}RE ™ (1)) {BR(t) k(t) + r*(t)} + S(t)e(t) + d(t) =0, (8.27)
D m(t) — 3 (e BP0 + 20} RE T (B2 @'k + P ()}
-% {k(t) BR(t) + rR(t)’}RR"‘(t){BR(t)'k(t) +rR8)} + k() e(t) =0, (8.28)
with the terminal conditions,

S(ty) = Qy, k(t;)=rs, m(ts)=0. (8.29)

We can obtain the following explicit formula for the Nash control in a state feedback form.

Proposition 3. Suppose that a solution (S, k,m) to the equations (8.26)-(8.28) with (8.29) exists on all
of [to,ts]. Then a Nash solution u* to the linear-quadratic differential game (8.23) is found from

wf@) = KB(t)z"(t)+ (1)

= —RET(1) [{BB(S(t)+ NB() Yot (¢ +BB(t)’k(t)+rB(t)], (8.30)
B = KRzt (t) + ()

= —RR7'(t) [{Bﬂ(t) £+ NR() Yo~ (¢ +BR(t)’k(t)+rR(t)], (8.31)

145

and the corresponding value is given by
* g ¥ y 1 I Qg TR Gy
Jz*5ut] = J¥(te, 20) = -élob(t())ZO + k(tg) 20 + m(to), (8.32)
where z* = z{u*] is the state trajectory driven by the Nash control u*.

The above proposition states that, just like the well known standard form of the Riccati equation
method for the regulator problem, we may compute the Nash solution ©* by the following procedure. By
substituting (8.30) and (8.31) into the linear ordinary equation in (8.23), we obtain

%x(t) = [A(t) — BB@)RET(t){BB(t)'S(t) + NB(t)'}
— BR&)RR ™ (#){ BR(2)'S(t) + NR(t)’}] z(t)
+ [—BB(t)RB"l(t){BB(t)'lc(t) +78(t)}

— BRORET () {BP®'K() + PO} +et)], wlto) = 20, (8.33)

and can compute its solution z* from it. Finally, we can compute the optimal control «* from z* by
(8.30) and (8.31):

wB) = —RET'@) [{BB(t)'S(t) + NB() Yo" (t) + BP (1) k(2) + rB(t)] , (8.34)

wB) = —RET() [{BR(t)/S(t)+NR(t)'}m*(t)+BR(t)'k(t)+rR(t)]. (8.35)

8.4.4 SQQM Iterative Algorithm for Game Solution

In this section, for nonlinear-quadratic games, we present an iterative algorithm which implements the
Sequential Quadratic-Quadratic Method (SQQM) discussed in Section 2 with linear-quadratic solution
based on the Riccati equation method in Section 3. Thus, we assume that the cost function J(u) has the
form given in (8.24), where the block matrices and component vectors given in the original cost function
(8.24) are denoted by barred notations, e.g., respectively by Q(t), R (t), RR(t), NB(t), NE(t), d(t), 7B(¢)
and 7(t) to distingnish them from the various matrix-valued functions for the Riccati equations.

Sequential Quadratic-Quadratic Method

Step 0: Select a stopping criterion £ > 0, and an initial control-trajectory-costate triple (ug, zo, o)
with z¢ = z{ug)], where pp = 0 or g is determined by

2 110(8) = ~gu(w0(t), w0 1)) — > (011D (o0(t),uo(®)), molts) = (g1)alaolts)).
j=1

(8.36)
Set the counter ¢ = 0.

146

Step 1: Set the matrix-valued functions as follows:

A(t) = folzi(t),wi(t)), BP(1)
BE(t) = fur(zi(t), wi(t)), c(t) =
d(t) = d(t) + Q(t)x:(t) + NP (H)u. (¢) + N*(t)u, " (2),
rB(t) = '"B(t) + NB()ai(t) + RP (t)u P (¢),

rfi(t) = 7R(t) + NR@)zi(t) + RR()u(t),
Q) = Q(t) + 113 (t) faz(2i(t), wi(t)),

RE(t) = RP(t) + ps(t) fubus (x:(t), us(t)),
RR(t) = RE(t) + pi(t) furmur (@:(8), ualt)),
NB(t) = N2(t) + pa(t)' foun (2:(t), wa(2)),

NE(t) = NR(t) + ma(t) foun (z:(t), wi ().

Step 2: Solve the following Riccati equations:

= fus (2:(t), ui(t)),
0

%S(t) +S(A() + A)'S()
—{S(t)BB(t) + NB()}RB™ (){B2(t)'S(t) + NB(1)'}
—{S(®)BE(t) + NR©) YRR (1) { BR(t)'S(t) + NR(®)'} + Q(t) =
i)
—{S()BE(t) + NR(&) YRR (6){ BR(t) k(t) + r7(t)}
+S(t)c(t) +d(t) =0,
m(f) - —{Ic(t) BB(t) + 2 () }RE T () { BB (1) k(1) + rB(t)}
—E{k £ BR(t) + rR(t) YRR () { BR(t) k(1) + r7(t)}
+k(t) c(t) = 0,
backwards from the terminal conditions

S(tf) = Qf,k(tf)=ff+Qf:L‘i(tf),
m(tf) = 0

and obtain the solution (S(t), k(t), m(t)).
Step 3: Solve the linear ordinary differential equation:

%&ri(t) = [A(t) - BB(t)RB_l(t){BB(t)'S(t) + NB(t)'}
- BR)R® (t){B"(¢)) S(t) + NR(t) }]

+ [-— BE®RET (t){ BB () k(t) + rB (1)}

— BRORY O{B2 W) k() + 7 ()} + ()],

dei(to) = 0

forwards and obtain the state correction &z;(t).

147

SR + At 'k(t) - {S(t)BB(t) + NB(®)}RB ™ (){BE(8) k(t) + rB(2)}

(8.47)

(8.48)

(8.49)

(8.50)

(8.51)

Step 4: Compute the control correction du;(t) from the state correction &, (t) by
B
du; P (t) = KP(t) des(t

)+ B ()
~RE7(1) [{BB(t) S() + N2 () Yawi(t) + BE(®) k(1) + 7P (1) (852)
dui " (t) = KB(t) dri(t) + ()
~RETY(p) [{BR(t) S(t) + NR(t) Yaws(t) + BR(t) k(t) + r2(t)] (8.53)
Step 5: Update the control by

U1 (B) = us(t) + o Gui(t)

(8.54)
with a step size a; € (0,1].
Step 6: Compute z;+; = z[u;11] by solving the original differential equation forwards:
d
dtﬂftﬂ(t) (@i (), uia (), zina(to) = 20. (8.55)
Step 7: Compute the new costate v;1 by solving the adjoint differential equation:
d 4
dtVz+1(t) = =g (@is1{t), vit1(t)) — ZV,(i)1(t)f(3)x(7f'i+l(t)yUi+1(t))
i=1
= —d(t) = Q)i 1 (t) = N2 (t)uin () = N (B)uirr () — vira (1) A(1)
(8.56)
backwards from the terminal condition vy, (t5) = 75 + QTit1(ty).
Step 8: Update the costate by
piyi(t) = pit) + By [ria (8) — pa(t)]
(8.57)

with a step size §; € (0,1].
Step 9: If ||du;|| < ¢, stop. Otherwise, go to Step 1 with i replaced by i + 1.

Remark 4. When the estimate (u;, z;, i;) is far from a local (Nash) optimum (u*, z*, A*), we may choose
positive numbers less than one for the step sizes a; and §; in order to keep the iterative process stable.
However, when the the estimate (u;, z;, ;) is close to a local (Nash) optimum (u*, z*, *), we recommend
the choice of a; = 1 and 3; = 1 to make the iterative process converge faster. Recall that du* = 01is a
necessary condition for the Nash solution u*. Hence

t

||dus]| = J ty —to)™ / |u? (8) 2t (8.58)

o 1<]<m
or
lull == 3" sup | (1) (8.59)
1<j<m 0SS

may be used to measure the proximity of the current solution estimate u; to the Nash solution u*.

148

8.5 Experiment Results and Analysis

The cases shown here cover both the scenario for 1 unit vs. 1 unit and the scenario for 5 units vs. 5
units, for both Model 2 and Model 3. The results for 1 unit vs. 1 unit are shown in Figure 8.1 and
Figure 8.2. The results for 5 units vs. § units are shown in Figure 8.3 and Figure 8.4. Each Blue unit
starts with 10 interceptors, and each Red unit starts with 10 bombers. In these experiments!, each force
has two objectives: i) to reach its specified fixed destination target, and ii) to reduce the number of enemy
platforms while preserving the number of its own platforms as many as possible.

We performed the experiment starting from an initial solution estimate, whose initial velocity controls
consist of a constant control so that its resulting trajectory is the straight line from its initial location
to its destination target’s location. As an initial firing intensity control for each force, we chose constant
functions as well.

10 T T T ¥
000 quadratic - quadratic
+++. linear — quadratic
)
10° F e \ 4
o \
s + . AY
B« S,
-1 \\ T -+ . -
107 \ e, §
N +
z R
©
= \
\
107} \ |
\
\
Y
\
-3 b\
10 7 N _
N
‘o
10“ A 1 1 1
[50 100 150 200 250
time [sec]

Figure 8.1: Convergence of SQQM and SLQM (Model 2, 1 unit vs. 1 unit).

The actual implementation in Matlab of the Quadratic-Quadratic Algorithm is based on the imple-
mentation for the Linear-Quadratic Algorithm. The main difference resides in the introduction of the
quadratic term of the plant model, by way of a costate, to the cost function. As the value of the costate
is also recomputed at each iteration (by solving a system of ordinary differential equations), the choice
of its initial value greatly influences the convergence and speed of the iterative process. As the default,
the initial value of the costate is now set to zero; if a better initial value is found by other means (e.g.
method of characteristics), a faster convergence may be attained.

The iterations are performed by specifying the following parameters: the maximum number of iter-
ations, the threshold for the norm of the control correction ||du;|| under which convergence is declared,
the step-size oy for the control refinement and the step-size §; for the costate refinement. A conservative
choice, i.e. smaller values, of the last two parameters, a; and (3;, is safer for the stability of the sequential
iterations, but at the price of a slower convergence speed.

A special remark must be made about numerical precision: as expected from theoretical results, the
Quadratic-Quadratic Algorithm is more sensitive to numerical round-offs and approximations than the
Linear-Quadratic Algorithm is. Thus, to arrive at a small value of the norm of the control increment
[ldu]|, it might be necessary to increase the relative tolerance and/or the absolute tolerance of the chosen
integration algorithms; for this purpose, we made use of integration ‘options’ (as provided in Matlab) at

IThese scenarios are typical of simulations described in greater detail in other chapters; here our goal is to compare the
behavior of the SQQM algorithm with that of the SLQM algorithm.

149

10 T T T T Y T
oco: quadratic - quadratic
o - - +++: linear — quadratic
Q
.
10° b - A -4
v O \
L A
s \
* o
e, N
-1 . \
107 SV J
R
) G‘X‘L\
“ ~
£ \ +
\ N
107} \ E
v +
!
! “+
i
-3 N
107} o E
10“ A 1. 1 L 1 A
0 20 40 60 80 100 120 140

time [sec]

Figure 8.2: Convergence of SQQM and SLQM (Model 3, 1 unit vs. 1 unit).

each call of the integration routines. The current default values have been selected after running several
scenarios, obtaining a reasonable compromise between speed and accuracy.

Finally, we mention that the quadratic algorithm numerically requires the Hessian of the plant model.
The subprograms for computing the Hessians have has been built using the symbolic math tool of the
Maple core in Matlab; this procedure for building the subprograms has been automated, so as to be able
to switch easily between models (i.e., between Model 2 and Model 3). When the size of the problem
increases, the computational work required by the evaluation of the Hessian can considerably increase
the computational time.

Several experiments on different scenarios, based on both Model 2 and Model 3, have shown the
convergence of the outputs of the SQQM and SLQM algorithms to the same solution. As for the speed,
the SQQM has generally proven to be faster in scenarios not too complex, both for Model 2 and Model
3. For example, in Figure 8.1 and Figure 8.2, the norm ||éul| of the control correction for the SLQM is
shown as a function of the time needed by the iterative procedure. For the SLQM, the norm reduces
slowly but steadily; for the SQQM, instead, it first increases, due perhaps to a poor initial choice of the
costate up, but then decreases much more rapidly than the SLQM. Note that the time needed for the
computation of each iteration is almost halved, for both the SLQM and the SQQM, when using Model 3
instead of Model 2, due to a simplification in model structure; this can be seen in all the figures.

For higher order models, the computational time required at each iteration becomes very large, and
the SLQM in general performs better, as shown in Figure 8.3 and Figure 8.4 for a scenario of 5 units vs. 5
units. We need to point out the difference in the computational time needed for one iteration between the
two methods. The horizontal distance between successive points indicates the time needed to complete
one iteration. For example, one iteration of the SQQM takes about 60 seconds, while one iteration of the
SLQM takes only 15 seconds in Figure 8.4. Indeed, when the number of units increases, the small number
of iterations of the quadratic algorithm cannot compensate for the computational burden of evaluating
the Hessian along the estimated trajectory. The choice of the initial value for the costate p; in the SQQM
is critical, in the sense that the simulation may stop before the costate starts to converge.

In order to surmount this seeming weakness of the SQQM algorithm for complex cases, we devised
an alternative method by using both the linear-quadratic and the quadratic-quadratic methods. First,
the linear-quadratic algorithm is started and a test is routinely performed in order to monitor if the
quadratic-quadratic algorithm can take over, namely when the correction norm at the next estimate
computed by the SQQM is smaller than the correction norm at the next estimate computed by the

150

ooo: quadratic ~ quadratic
+++: linear ~ quadratic

= [¥e3 O -0n s
o 0
o 10 . O b
= hes
~ g O
O
*
. ®-s N
Ty > .
3 O e j
k\ el
+
N
o
\+ ;
S
e
407 1 L L s
o 500 1000 1500 2000 2500
time [sec}

Figure 8.3: Convergence of SQQM and SLQM (Model 2, 5 units vs. 5 units).

10 T T T T T
000: quadratic — quadratic
+++ linear — quadratic
- @ ~
e ~ 0.
x O RS
10° F5 ~ .
' e
i ™o
\ heN N
| -
. heN -
== \\ Te ~
2107} v RN P
2 x o+ S
Voot ~
R i ~
TR AN
Vo R
3 ~0
2 1
10 °F \ 7
v
10‘3 1 4 1 i 1
0 100 200 300 400 500 600
time {sec}

Figure 8.4: Convergence of SQQM and SLQM (Model 3, 5 units vs. 5 units).

151

oo 078 O -0 0- g0

-
- 8 -
Tk [
. O 9.

. .
T & o
tr, hel

-2 O quadratic ~ quadratic, stepsize 0.1
+ linear ~ quadratic, stepsize 0.1

> quadratic — quadratic, stepsize 1
after one steps of linear-quadratic

L L L i
0 500 1000 1500 2000 2500
time [sec]

Figure 8.5: Convergence of SQQM, SLQM and SLQM-SQQM (Model 2, 5 units vs. 5 units).

SLQM. Indeed, the linear-quadratic algorithm serves the purpose of reaching an estimate solution which
is sufficiently close to the optimal solution, and the purpose of supplying a costate estimate when it is
possible to switch to the quadratic-quadratic algorithm. For example, in Figure 8.5, the diamond line
shows the performance of the blended method. Indeed the SQQM takes over after just one step of the
SLQM, and at that point the value of the step-size for the costate update 3; can be increased to its
maximum value of 1, increasing considerably the convergence rate. Indeed, the norm of the correction in
the diamond line reduces very quickly to 107!, Such a blend of the two methods gives the best results:
once the SQQM takes over, it converges to the optimal solution more rapidly than the SLQM alone or
the SQQM alone. Note that parameters are to be set, such as the step-sizes for control update, costate
update and switching conditions.

8.6 Conclusions and Recommendations

The Sequential Quadratic-Quadratic Algorithm converges to the same solution found through the Se-
quential Linear-Quadratic Algorithm, for all models and scenarios. So the first hypothesis of Experiment
8 is proven true. About the second one, namely an improvement in convergence speed, the conclusion
is clear at this point. Indeed, the SQQM alone proves to be faster in simple scenarios; if, however, the
starting trajectory and costate estimates are too far from the optimal solution, the SLQM may be used
at first, and then switch to the SQQM once the solution estimate is close to the optimal solution. In more
complex cases it is thus advantageous to blend the linear-quadratic algorithm and the quadratic-quadratic
algorithm, taking advantage of both the superior stability of the SLQM and the superior speed of the
SQOQM.

152

Bibliography

[1] B. Anderson and J. B. Moore, Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[2] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, second edition, Academic Press,
New York, New York, 1995.

[3] A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Blaisdell Publishing Company, Waltham,
Massachusetts, 1969.

[4] D. G. Luenberger, Optimization by Vector Space Method, John Wiley and Sons, New York, New
York, 1969.

[6] H. Mukai, et al., Sequential linear quadratic method for differential games, in Proceedings of the 2nd
DARPA-JFACC Symposium on Advances in Enterprise Control, 159-168, Minneapolis, MN, July
2000.

[6] H. Mukai, et al., Game-theoretic linear-quadratic method for air mission control, in Proc. 39th IEEE
Conf. Decision and Control, 2574-2580, Sydney, Australia, Dec. 2000.

[7] S. M. Robinson, A quadratically-convergent algorithm for general nonlinear programming problems,
Math. Programming 3, 145-156 (1972).

[8] S. M. Robinson, Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear-
programming algorithms, Math. Programming 7, 1-16 (1974).

[9] R. B. Wilson, A simplicial algorithm for concave programming, Ph.D. Dissertation, Graduate School
of Bussiness Administration, Harvard University, Cambridge, Mass., 1963.

1563

154

Chapter 9

Experiment 9: Detector
Performance under Noise

9.1 Executive Summary

In this Chapter we report the experiments performed to test the effectiveness of a newly designed “game-
theoretic-optimal” detection filter in handling noise-corrupted observations of the battlefield. The basic
purpose of the detection filter is to reveal the occurrence of an “engagement action” from enemy units by
monitoring only variables associated with the friendly units. The game-theoretic approach to the design
of the filter makes it possible to attenuate the effects of measurement noises, but not the effects of the
action to be detected. The outcome of the experiments shows very clearly that the game-theoretic filter
is very effective under different situations of noise and compares very favorably with a filter designed on
the basis of classical state-estimation methods.

9.2 Purpose of the Experiment

This section of the report describes experiments on detection and isolation of multiple enemy actions in
a battlefield. Specifically, the basic purpose of this first series of experiments is to test the effectiveness
of a newly-designed (“game-theoretic”) filter in handling noise-corrupted observations of the battlefield.

The mathematical description of the battlefield used here is the one introduced in [1]. We consider the
case in which two opposing forces are present in the theater of operations, the Blue force (the “friends”)
and the Red force (the “enemies”). Each force consists of two units and each unit consists of a number
of platforms whose evolution in time is described by a first order nonlinear differential equation and
depends on the “actions” which the opposing units are performing against the unit in question. If any
“new” action is performed by any of the opposing units, this affects the evolution of the number of
platforms of the other force’s units. Letting n and 52, with i = 1,2, denote the number of platforms
of the i-th Red and - respectively — i-th Blue unit, the model in question is a four-dimensional nonlinear
system described by two pairs of equations of the form (cf. [1])

LnR(t) =)

85, [1 = {1 = PEB(EE) — 7B)AEN] } |

ot

- By BN
g [BB

R 2 _ “"ji{ Rty

x e+ 375 { l1-e :

d

Gt ® =P

r {n%)«%(t)}‘ n
2 Tl ~ ~ R
x aB+zj:1{ L—e U FO TS Bl [1—{1ﬁaﬁisoﬁln?(t)—nﬁ(tmﬂ@i}"n]}

155

In these equations, Wﬁ() and wﬁ -) are (independent) input variables representing the “level of en-
gagement” of the j-th Red unit with the i-th Blue unit and - respectively - of the j-th Blue unit with

the i-th Red unit. For convenience, we suppose in all our experiments that

mfi (1) = wfy(t) = m(t), wf () = wgh(t) = wi(t) .

This means, in the terminology of [1], page 2, that we allow the “unique target constraint” to be violated
(for the Red units only).

The basic problem addressed in our series of experiments on the design of filters for the detection of
enemy actions is the following one: we monitor only the number of platforms in the two Blue units (i.e.
we measure only the values of the two state variables nP,n¥) and we want to detect the occurrence of
an “engagement action” from either one of the two Red units (i.e. we want to detect when either one of
the two input signals 77(-) has become nonzero). Implicit in this is the assumption that the two other
sta.te variables nf ,772 (number of platforms of the two enemy units) as well as all the input variables
i,j = 1,2, and 7r , 1 =1,2 are not monitored. The purpose of the detection process is precisely the

determination of when either 78 or £ has become nonzero, without having it directly measured.

1,]7

9.3 Hypothesis to Prove or Disprove

In the first series of experiments, conceived to test the effectiveness of our “game-theoretic” detection
filter, we consider, instead of the full nonlinear model (9.1), a bilinear approzimation.
This bilinear model has the form (see {1], equation (29))

Enle) = —afnf(e) — P OrRE - 0P OB (),
Snl(t) = —afn(0) ~ AR P (Orfh(0) — 2dgn (On0)
9.1)
dtm (t) = ‘03771 (t) - ’711771 ()7f11()~ 'Yleng(t)ﬂ'g(t),
dtﬂz 2ty = —aPnB(t) —vEnf)l (1) — vEnf)nds(t) .

The structure of the filter that we use to solve the detection problem described in the previous section
is chosen according to a general (differential-geometric) methodology developed in our papers [2], [3].
This filter receives as inputs the two observed variables 7,7 and generates as outputs two signals 1,
79, called performance signals (typically known also with the name of residuals) in such a way that r;(¢)
is zero if the Red unit i is not engaged with the Blue units at time ¢ (i.e. if 77(t) = 0), and that r;(t)
is nonzero if the Red unit i is engaged with the Blue units (i.e. if 7f1(t) # 0). Specifically, this filter is
modeled by equations of the form

() = —aPm(t)+amP) - “2 B () — (1)),
722
fa(t) = —aBia(t) + ga(nB(t) - z nB(t) - (1)),
(9.2)
) = ﬁ(t)«%f(t)-m(t),
ro(t) = wP(t) - ”%F(>~ﬁz<t>.
'711

in which the “gain parameters” g; and gy are to be determined in some “optimal” way.

The basic issue that makes the design of the filter (i.e. of the gain parameters g; and ga) critical is
the presence of measurement noises on the two monitored variables 7, n¥ (the two inputs to the filter
(9.2)). As a matter of fact, standard methods for state estimation from noisy observations (such as those
used in the classical Kalman filter) may well reduce the effect of measurement noise on the performance
signals 71,79, but only at the expenses of a reduction of the sensitivity of the performance signals to the
signals 78, i that need to be detected. In other words, these methods tend to uniformly filter out the
noises affecting the measurements as well as the signals that need to be recognized. This unpleasant
circumstance was observed in our first series of experiments, in which a design technique inspired to the
theory of Kalman filter was used.

In order to improve the “diagnostic” capability of the detection filter, it is of primary importance to
selectively reduce the effect of the measurement noise while not attenuating the signal associated with
the action to detect. We have achieved this goal by casting the detection problem in a game-theoretic
framework in which the measurement noise and the event to detect are seen as opposing players (see [4]).

The series of experiments described in this section of the report validates the effectiveness of our
“game-theoretic” filter, and demonstrates how this filter compares very favorably with a filter in which
the gain parameters are not chosen in a game-theoretical optimal way, but rather on the basis of classical
state-estimation methods (in what follows, we will refer to the latter as to a “Kalman-like” filter).

9.4 Experiment Setup

This series of experiments of detection of enemy actions is designed in the following way. The battlefield
is modeled as in equation (9.1), whose four states represent the number of platforms of each of the four
units involved in the battle. The inputs variables, representing the level of engagement of the battling
units, are fixed functions of time. In particular, the two levels of engagement of the Red units 1 and 2
versus the Blue units vary with time as shown in Figure 9.1, where “Action 1” represents the level of
engagement of Red unit 1 and “Action 2” represents the level of engagement of Red unit 2. Note that
the first action occurs at ¢ = 30 units of time, whereas the second action takes place at ¢ = 50 units of
time and this while the first action is still occurring. The corresponding behavior in time of the number
of Red and Blue platforms in each unit is plotted in Figure 9.2. Finally, Figure 9.3 depicts the outcome
of the two observations, namely the evolution in time of the nurnber of platforms in the two Blue units,
corrupted by measurement noise (compare with the two bottom graphs in Figure 9.2, depicting the same
quantities without measurement noise).

Figure 9.4 shows a block diagram describing the experiment. The two (noise-corrupted) measured
observations are fed into the filter: the Qutput 1 of this filter is expected to reveal the occurrence of
Action 1, while the Output 2 is expected to reveal the occurrence of Action 2. The purpose of the
experiment is to compare the effectiveness of the detection process with respect to two different choices
of the gain parameters g;, g2 in the detection filter (9.2). In the first choice, that leads to what we refer
to as a “Kalman-like” filter, each parameter g;, i = 1,2, is chosen in such a way as to render

t1
sup / (ril5 — Y (il -1 + v2l3-2))dE <0, for i = 1,2, (9.3)
v1,v2 JO

where [0,¢;] is the interval of time over which the experiment is performed, 7y, i = 1,2 are the variables
as defined in (9.2), v;, for i = 1,2, are the noise signals affecting the measurements of nZ, Q, M,V are
suitable weighting matrices, and «y is a threshold parameter representing the attenuation of the noise
on the residual. In the second choice, that leads to what we refer to as a “game-theoretic” filter, each

parameter g;, 7 = 1,2, is chosen in such a way as to render

ty
sup inf [l + 15fws = (o} -+ ozl)l <O, for i = 1,2 (9.0
0

vy, v2 Ty

in which Tl'iR, i = 1,2, are the engagement enemy actions (which must be detected), N is a weighting
matrix and the other variables and parameters are as in (9.3).

157

Action 1

Action 2

10

10

20 30 40 50 60 70
Time

2.5

1.5

0.5

i 1] 1 |

10

20 30 40 50 60 70
Time

Figure 9.1: Engagement enemy actions (to be detected).

158

80

90

100

No. of platforms

No. of platforms

20 10
8.
151 »
. 1S
£
10t -
B 4}
3
5- \ - 2
0 - - : S 0 . . - -
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
10 10
8 8t
[72])
£
61 £ 67
o
Q.
4} S 4t
(@]
pd
2t 2
0 . . - . 0 . . . :
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Figure 9.2: Time history of the number of platforms of the four units. The two top plots represent the
number of platforms of the Red units, the two bottom plots represent the number of platforms of the

Blue units.

159

Measured No. of Platforms 1

Measured No. of Platforms 2

15 T T T T T T T

“i” LR A |

0 10 20 30 40 50 60 70
Time

20 T T T T T T T

80

90

100

15 JIF)

T

10

__5 1 I | i | i {
0 10 20 30 40 50 60 70
Time

80

90

100

Figure 9.3: Noisy outputs. Noise-corrupted measured observations (top: number of platforms of the first

Blue unit, bottom: number of platforms of the second Blue unit.

160

Measurement Noise

oy FlH‘er‘ < Residual r,

ARERRRERS of - g R ey
H :* - }
‘ { Do b
Action 2 [e . Residual r,

¥ Outputs: “Friendly”

\ ! number of platforms

T i plus noise
Number of platforms
per unit

Figure 9.4: Block diagram describing the experiment.

The experimental data that we have obtained show the improved effectiveness of the game-theoretic
detection filter with respect to the Kalman-like filter. This is demonstrated by the comparison of the two
different time-behaviors of the performance signals generated by the two different filters, in response to
the same measured observation corrupted by random noise. The filters are tested with respect to noise
with different amounts of energy and, for each fixed amount of noise energy, a certain number of different
noise signals are considered.

9.5 Example of experiment

In this experiment we consider a noise whose energy is equal to 15% of the energy of the noise-free
output. This amount of noise is already enough to hide, in the observation of the number of platforms
of the two friendly units (see Figure 9.3 for a picture of the two noisy observations), any sign of the
occurrence of either one of the two engagement actions from the enemy forces. Nevertheless, when the
noisy measurements are processed by a detection filter, a good deal of information about the engagement
actions which have occurred can be derived.

Figure 9.5 depicts the responses to Action I of the game-theoretic filter (top) and of the Kalman-like
filter (bottom). The comparison of the two plots already demonstrates a much better performance of
the game-theoretic filter as opposite to that of the Kalman-like filter. Note also that in neither of the
two cases the output of the filter is affected by the occurrence of Action 2, as it should be. Figure 9.6
depicts the responses to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bottom).
The comparison of these latter plots demonstrates more dramatically the efficiency of the game-theoretic
filter. As a matter of fact, the presence of noise on the observations is sufficient to completely hide the
occurrence of Action 2 in the output of the Kalman-like filter, while the output of the game-theoretic
filter still reveals this occurrence with a good deal of confidence. For the sake of completeness, in Figure
9.7 we show also the time histories of the two state variables of the two filters.

A special feature of the detection process that deserves to be stressed is the complete “independence”
or “non-interaction” of the two performance signals. The first one increases its response upon the oc-

161

Performance signal 1 (GT)

Performance signal 1 (K)

1.2 i T T ¥

0.8
0.6

0.4

T

0.2

__02 1 | | i] i | | i

Time

1.5 T T I T 1

100

0.5

-05 1 ! ! | ! ! 1 L !
0 10 20 30 40 50 60 70 80 90

Time

Figure 9.5: Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 15% of the energy of the noise-free output.

162

100

Performance signal 2 (GT)

Performance signal 2 (K)

100

0.15 T T T T T T T M
0.1 - “
0.051 =
0 .
__005 1 | i | { § i 1 1
0 10 20 30 40 50 60 70 80 90
Time
0.15 T T T T T T T T T
01F -
0.051 "
0 WAMM%W
_005 I 1 { 1 I t i | 1
0 10 20 30 40 50 60 70 80 90
Time

Figure 9.6: Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter {(bottom)
under noise with energy equal to 15% of the energy of the noise-free output.

163

100

Filter State (GT)
]
= o =

{
N
(=1

10

20

30

40

60

70

80

90

100

Filter State (K)

!

Figure 9.7:

20

30

40

50
Time

60

70

80

90

State evolution of the game-theoretic (top) and Kalman-like filter (bottom).

164

100

Performance signal 1 (GT

. 2
“o 10 20 30 40 50 80 70 80 90 100
Time

Performance signal 1 (K}

L L L
4] 10 20 30 40 50 60 70 80 90 100
Time

Figure 9.8: Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 25% of the energy of the noise-free output.

currence of the first action but it is not affected by the occurrence of the second action. The second
performance signal remains close to zero when the first action takes place, while it becomes patently
nonzero as the second action occurs. This “non-interaction” property is at the basis of the isolation
process (that is, to distinguish which action is occurring and when) and is an outcome of the geometric
approach to the problem of detection and isolation.

Finally, it should be stressed that the difference between the two performance signals depends not
only on the fact that they are responses to different input signals but also on the choice of weights in the
cost function which determines the parameters of the filters, which have been differently chosen in the
two cases.

9.6 Results of the Experiments

QOur experiments are aimed also at testing the behavior of the detection filters to measurement noises
of progressively increasing energy. The response of the game-theoretic and Kalman-like filters when the
energy of the noise is equal to 15% of the energy of the noise-free measurement has been reported in the
previous section (cf. Figures 9.5 and 9.6). Here we consider the responses to the same noise (the seed is
the same as before) but with an increased level of energy. In particular, we consider the cases of noise
whose energy is equal to 25%, 35%, 55%, 80% and 110% of the energy of the noise-free measurement,
and plot the responses of the two filters in Figures 9.8-9.9, 9.10-9.11, 9.12-9.13, 9.14-9.15 and 9.16-9.17,
respectively.

In our experiments, we have also tested the behavior of the detection filter under different kinds of
noise (randomly assigned seed) and different energy levels of the noise. In particular, for each level of
noise (15%, 25%, 35% of the energy of the noise-free measurement signal), we have run three experiments
for the game-theoretic filter and three experiments for the Kalman-like filter, each one with a different
noise signal. The outcome of these experiments is depicted, for the different levels of noise, in Figures
9.18-9.19, Figures 9.20-9.21 and Figures 9.22-9.23, respectively.

9.7 Conclusions and Recommendations

The game-theoretic detection and isolation filter shows a very good performance under different situation
of noise corrupting the measurements. This is particularly true when compared to the behavior of the

165

A

Kalman-like detection filter. The main reason for this improvement is in the selective attenuation of the
noise accomplished by the game-theoretic filter, which does not reduce the effect of the signal to detect.
This selective attenuation of the noise increases the diagnostic capability of the game-theoretic filter even
in the presence of high levels of noise energy.

166

Performance signal 2 {GT)

0.2 ¥ v : . : r y T r
X gasp 1
o~
®
2
S 01k E
%
3
g 0.051 E
E 0 s e e At At N A N S o o s
-0.05 L s L : . : s L)
[} 10 20 30 40 50 60 70 80 % 100
Time

Figure 9.9: Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 25% of the energy of the noise-free output.

Performance signai 1 {GT)

Performancs signal 1 (K)
o
o
T
s

10 20 a0 40 50 60 70 80 80 100
Time

Figure 9.10: Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 35% of the energy of the noise-free output.

167

0.2 A T T Y T T

=
[CA
o~
Il
g
o
@
{
£
5
€
5
a

-0.05)) ; ; . . . L .

0) 20 30 40 50 60 70 80 90 100
Time
0.2 5 T ; T v T T

£ oast
~
2
g o1 N
]
§ 005
§
E, L NI O e g AR L VP

-0.05 : 1 L L . : . A L

o 10 20 30 40 50 &0 70 80 90 100

Tima

Figure 9.11: Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 35% of the energy of the noise-free output.

b

o o
o o -

Parformanca signal 1 {GT)
o o
RS

1
o
N o

Performance signal 1 (K)

L
10 20 30 40 50 60 70 80 90 100
Time

Figure 9.12: Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 55% of the energy of the noise-free output.

168

Performance signal 2 (GT)

Time

0.5 4

0 i

0051 ~

Performance signai 2 (K)

~0.05 : ') " s ' . L 1
0 10 20 30 40 50 80 70 80 90 100
Time

Figure 9.13: Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 55% of the energy of the noise-free output.

15 T Y T T T T
=
=3
®
g
i
in
é
€
5
a

-05 L L L L L L . L L

] 10 20 0 40 50 60 70 BO 80 100
Time

1.5 T T T T T T ¥
£
- 1} B
®
4
K
@
g 05 B
g
&
£
g d
o
a

~05 " L i L s L L L

0 10 20 30 40 50 60 70 80 90 100
Time

Figure 9.14: Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 80% of the energy of the noise-free output.

169

° o e 4
g = <

o

=3

Pedormance signal 2 (GT)
)

i
o
o
o3

-0.1 : ; .
0 10 20 30 40 50 60 70 80 90 100
Time

©
@

°©
N
T

Performance signal 2 {K)
o
o =

I
@
o

s
10 20 30 40 50 80 70 80 80 100
Time

Figure 9.15: Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 80% of the energy of the noise-free cutput.

15 ¥ T T v T T
[
<3
- 1
®
4
>
@
0.5
8
e
;
g 0 b
3
a
05 L L L L A + L L L
0 10 20 30 40 50 80 70 80 90 100
Time
15 Y T T T T T
3
- tr
®
£
&
]
§ 0.5 !
g
g o
3
a
-05 L : L L L ¢ 2 s L
0 10 20 30 40 50 80 70 80 80 100
Time

Figure 9.16: Response to Action 1 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 110% of the energy of the noise-free output.

170

0.258 ¥ T T T T T

o
e 2 o
- ;N

Performance signal 2 (GT)
o
o
o o

1
e
=1
&

-0.1

4
w

o
N
T

Parformance signat 2 (K}
=3

%

!
©

L ; .
10 20 30 40 50 60 70 80 90 100
Time

Figure 9.17: Response to Action 2 of the game-theoretic filter (top) and of the Kalman-like filter (bottom)
under noise with energy equal to 110% of the energy of the noise-free output.

15 12 1.2
g 1 1
- ! 08 08
g
& 06 06
05
8 04 0.4
E o 0.2 02
& [0
-0.5 -0.2 -0.2
[50 100 [50 100 (] 50 100
Time Time Time
15 15 15
3
o1 ! !
H
t
g 05 05 05
g
é Om . le\/\\’\/\‘ . J«\/J’L\/"\
Q.
-0.5 -0.5 -05
50 100 o 50 100 0 50 100
Time Time Time

Figure 9.18: Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 1. The
six responses correspond to six different random choices of the seed of the noise signals. The energy of
the noise signals is equal to 15% of the output signal energy.

171

02 0.2 0.2
o
Q 0.15 0.15 0.15
~
K
5 o1 0.1 01
B
8
£ 005 0.05 005
E
£
T 0 o o
a.
-0.08 -0.05 -0.05
[¢] 50 100 [} 50 1 o 50 100
Time Time Time
1 08 0.8
g 08 0.8
~ 05
5 04 04
&
B ° 0.2 0.2
g 0 [}
£
€-05 -0.2 -0.2
o -0.4 -0.4
-1 ~0.6 ~0.6
0 50 100] 50 100 0 50 100
Time Time Time

Figure 9.19: Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 2. The
six responses correspond to six different random choices of the seed of the noise signals. The energy of
the noise signals is equal to 15% of the output signal energy.

o
[
N

=
G 1 1
-1 08 08
]
3
2 06 06
8 05
8 04 0.4
§ 0.2 02
£ [
& 0 0

-0.8 ~0.2 -0.2

[} 50 100 0 50 100 0 50 160
Time Time Time

15 15 1.5
3
- 1 1 1
2
2
@
§ 05 05 0.5
o
E
£ 0 4 0
3
a

-05 -0.5 -05

4] 50 100 0 50 100 0 50 100
Time Time Time

Figure 9.20: Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 1. The
six responses correspond to six different random choices of the seed of the noise signals. The energy of
the noise signals is equal to 25% of the output signal energy.

172

0.15 0.15 RE)
o
<)

~ 01 0.1 0.1
k1
g
B

E 0.05 0.05 0.05
5
5

& 0 [o
5
a

-0.05 -6.05 -0.05

° 50 1 [} 50 100) 50 100
Time Time Time

15 15
1 1
05 0.5
Y 0 ‘
-0.5 -0.5 |
|
-1 -1 z
E -1.5 1.5
[} 50 100 [} 50 100 [¢] 50 100
Time Time Time

Figure 9.21: Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 2. The
six responses correspond to six different random choices of the seed of the noise signals. The energy of
the noise signals is equal to 25% of the output signal energy.

15 15 1.5
=
]

A | 1 1
®
$

§ 05 0.5 0.5
E

£ 0 0]
-3
o

-0.5 -0.5 0.5

50 100 0 50 100 0 50 100
Time Time Time

15 15 15
2

- 1 1 t
®
4
2
@

§ 05 0.5 05
1
3
a

-0.5 -0.5 -0.5

0 50 100 0 50 100 [¢] 50 100
Time Time Time

Figure 9.22: Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 1. The
six responses correspond to six different random choices of the seed of the noise signals. The energy of
the noise signals is equal to 35% of the output signal energy.

173

0.2 02 [1¥3
[
Q 015 0.1§ 0.16
o~
]
5 o1 01 01
@
8
£ 005 0.05 0.05
E
£
T 0 0 0
a.
~0.05 -0.05 -0.05
[50 100 [50 100 1] 50 100
Time Tima Time
1.6 2 2
g 1 15 15
3 1 1
5 05
S 05 0.5
0
£08 -0.5 -05
4
&
a -1 -1 -1
~-1.5 -15 -15
0 50 100 0 50 100] 50 100
Time Time Time

Figure 9.23: Responses of the game-theoretic (top) and Kalman-like filter (bottom) to Action 2. The
six responses correspond to six different random choices of the seed of the noise signals. The energy of
the noise signals is equal to 35% of the output signal energy.

174

Bibliography

[1] Washington University, Mission Dynamics Continuous-Time Model, Version 2.42.

[2} C. De Persis, A. Isidori, “On the observability codistribution of a nonlinear system,” Systems &
Conitrol Letters, 40, 297-304, 2000.

{3] C. De Persis, A. Isidori, A geometric approach to nonlinear fault detection and isolation, to appear
as a regular paper on IEEE Transactions on Automatic Control, Sept. 2001.

[4] C. De Persis, A. Isidori, “On the design of fault detection filters with game-theoretic-optimal sensi-
tivity”, submitted. ;

175

176

Chapter 10

Experiment 10: Detector
Performance under Parameter
Variations

10.1 Executive Summary

This Chapter describes the experiment results regarding the game-theoretic detection filter under para-
metric uncertainty. The exact values of the parameters in the mathematical model of the battlefield are
not known, and only a nominal value is available. The filter, whose objective is to reveal the occurrence
of an “engagement action” from enemy units, is designed on the basis of the nominal value. This set of
experiments shows that the game-theoretic detection filter, although proven to be effective in the selective
attenuation of measurement noise, is relatively sensitive to the uncertainty in the parameters.

10.2 Purpose of the Experiment

In [5], we tested the effectiveness of the game-theoretic filter in detecting enemy actions in the case in
which the measurements coming from the theater of operations were affected by noise. The basic purpose
of this second series of experiments is to assess the robustness of the “game-theoretic” detection filter
(cf. [4]) in the presence of uncertainty in the parameters appearing in the mathematical model of the
battlefield. Following [5], we summarize in the remainder of this section the problem of detection and
isolation of multiple enemy actions in a battlefield.

The mathematical description of the battlefield used here is the one introduced in [1] and already
adopted in [5]. We consider the case in which two opposing forces are present in the theater of operations,
the Blue force (the “friends”) and the Red force (the “enemies”). Each force consists of two units and
each unit consists of a number of platforms whose evolution in time is described by a first order nonlinear
differential equation and depends on the “actions” which the opposing units are performing against the
unit in question. If any “new” action is performed by any of the opposing units, this affects the evolution
of the number of platforms of the other force’s units. Letting nf* and nZ, with i = 1,2, denote the
number of platforms of the i-th Red and — respectively — i-th Blue unit, the model in question is a

177

four-dimensional nonlinear system described by two pairs of equations of the form (cf. [1])

d R
t — t)
dtn.b(‘) Y

_ B

I Byn)
i 5 zl ni;
x ai + Zj:l { I—e { W } e]1 [{1 - OJz(P]z ’771 (t) - 77] ()Dﬂllgjz} J']} s

d B B
By = —p!
_.R

3 2 fie)
x af‘—rz?;l{ b el 85 [1 = (1 - PRR(72 (1) — iR DBE.)" w]}

In these equations, 7; R(.) and 7r -) are (independent) input variables representing the “level of en-
gagement” of the j-th Red unit w1th the i-th Blue unit and - respectively — of the j-th Blue unit with
the i-th Red unit. For convenience, we suppose in all our experiments that

nfi () = mis(8) = 7 (), w5 (1) = m3(t) = mi(t) .

This means, in the terminology of 1], page 2, that we allow the “unique target constraint” to be violated
(for the Red units only).

The basic problem addressed in our series of experiments on the design of filters for the detection of
enemy actions is the following one: we monitor only the number of platforms in the two Blue units (i.e.
we measure only the values of the two state variables nP,72) and we want to detect the occurrence of
an “engagement action” from either one of the two Red units (i.e. we want to detect when either one of
the two input signals m £(.) has become nonzero). Implicit in this is the assumption that the two other
state variables nft ,n2 (number of platforms of the two enemy units) as well as all the input variables
1,7 = 1,2, and 7r , i =1,2 are not monitored. The purpose of the detection process is precisely the

’I/] 2
determination of when either 7 or mf has become nonzero, without having it directly measured.

10.3 Hypothesis to Prove or Disprove

The experiments of this second series aim to test the performance of the game-theoretic detection fil-
ter in the presence of parametric uncertainties and are implemented considering, as in {5}, a bilinear
approzimation of (10.1) instead of the full nonlinear model.

This bilinear model has the form (see [1], equation {29))

L)) = —ofnfi(0) ~Afinf OO ~ nf (O),
i’*(t) = oBnR(e) — EnP OB E) — EnB OB,

10.1
ZB(t) = —afnP(t) - Bnf)l (t) — v ()7 (1), o
ZBU) = —afnBt) - vEnfO)rf () — vt () wh(t)

in which the (actual) values of the paramctcrs appearing in the equations corresponding to the Blue units,
namely parameters ozf? , af, ’yu, vB,vB ,~L,, are not perfectly known and may differ from their nommal
values a?,a@ A2 55, 48,48, which are assumed to be known. The other parameters alt, aff, 4R,
v, v, v& of the model (10.1) do not affect the design and the response of the detection filter and
consequently their uncertainty does not need to be considered in this series of experiments.

The structure of the filter that we use to solve the detection problem described in the previous section
is chosen according to a general (differential-geometric) methodology developed in our papers [2], {3].

178

This filter receives as inputs the two observed variables nlB,nf and generales as outputs two signals ry,
ra, called performance signals (typically known also with the name of residuals), in such a way that r;(t)
is zero if the Red unit i is not engaged with the Blue units at time ¢ (i.e. if 72(¢) = 0), and that r;(t)
is nonzero if the Red unit 7 is engaged with the Blue units (i.e. if 77(¢) # 0). Specifically, this filter 1s
modeled by equations of the form

~R
Bi(t) = —aBi) +amBE) - 22nB(t) - m(1),
Y22
~R
fat) = ~&Bﬁz(t)+gz(n§3(t)—%nf(t%ﬁz(t)),
N ! (10.2)
r(t) = nP) - LBy — (),
Y22
<R
ra(t) = nB(t)— LhnB(t) - (),
Y11

in which &% = af = & and the “gain parameters” g, and g, are to be determined in some “optimal”
way.

The basic issue that makes the design of the filter (i.e. of the gain parameters g; and g¢;) critical is
the presence of measurement noises on the two monitored variables n,n% (the two inputs to the filter
(10.2)). The experiments reported in {5] demonstrate that the performance of a detection filter in which
the gain parameters g;,g> are chosen as the result of a “game-theoretic” design is substantially more
effective than a detection filter in which the gain parameters are designed through standard methods for
state estimation from noisy observations (such as those used in the classical Kalman filter). In this new
series of experiments, we want to test how the uncertainty in the parameters of the plant (10.1) affects
the behavior of the detection filter in which g;, go derive from the “game-theoretic” design.

10.4 Experiment setup

This series of experiments of detection of enemy actions is designed in the following way. The battlefield
is modeled as in equation (10.1), whose four states represent the number of platforms of each of the four
units involved in the battle. The (actual) value of each parameter in (10.1) is unknown. The inputs
variables, representing the level of engagement of the battling units, are fixed functions of time. In
particular, the two levels of engagement of the Red units 1 and 2 versus the Blue units vary with time
as shown in Figure 10.1, where “Action 1” represents the level of engagement of Red unit 1 and “Action
2" represents the level of engagement of Red unit 2. Note that the first action occurs at ¢ = 30 units
of time, whereas the second action takes place at t = 50 units of time and this while the first action is
still occurring. The corresponding behavior in time of the number of Red and Blue platforms in each
unit is plotted in Figure 10.2. Finally, Figure 10.3 depicts the outcome of the two observations, namely
the evolution in time of the number of platforms in the two Blue units, corrupted by measurement noise
(compare with the two bottom graphs in Figure 10.2, depicting the same quantities without measurement
noise).

Figure 10.4 shows a block diagram describing the experiment. The two (noise-corrupted) measured
observations are fed into the filter: the Output 1 of this filter is expected to reveal the occurrence of
Action 1, while the Output 2 is expected to reveal the occurrence of Action 2. The detection filter
considered for the experiments is the one described in (10.2) in which each gain parameter g;, i = 1,2, is
chosen in such a way as to render

t
sup ian/ []rzle + B n-1 = Pl lE o0 + fval3g-1)]dt <0, fori = 1,2, (10.3)
0

vy, v T

179

Action 1

Action 2

10

2.5

1.5

0.5

10

20 30 40 50
Time

60

100

| { I

1

10

20 30 40 50
Time

Figure 10.1: Engagement enemy actions (to be detected).

180

60

70

80

90

No. of platforms

No. of platforms

20 10
N
8r -
15} @ hN
E
£ °
10t a
B 4}
2
5.
0 L " 4 i O " " L "
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
10 T 10
8t 8
[}
E
6r £ 6¢
«
Q.
a4t S 4}
(o]
pd
2 2
0 - . . : 0 . . : -
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

Figure 10.2: Time history of the number of platforms of the four units. The two top plots represent the
number of platforms of the Red units, the two bottom plots represent the number of platforms of the
Blue units.

181

15 T T T T

Measured No. of Platforms 1

0 10 20 30 40

e}
o

50
Time

60

70 80

90

100

- —_
W o [4;]
l T

Measured No. of Platforms 2
o
T

i 1 | !

{
[8)]

1

i

o

10 20 30 40

50
Time

60

70 80

90

100

Figure 10.3: Noisy outputs. Noise-corrupted measured observations (top: number of platforms of the

first Blue unit; bottom: number of platforms of the second Blue unit).

182

B e ot

Measurement Noise

o —

Residual r,

Actionl (Battlefield
R e ey \“",‘g
e
Achona / Residual r,
Outputs: “Friendly”
k number of platforms
T - plus noise

Numbaer of platforms
per unit

Figure 10.4: Block diagram describing the experiment.

where [0, ¢1] is the interval of time over which the experiment is performed, r;, i = 1,2 are the variables
as defined in (10.2), v;, for i = 1,2, are the noise signals affecting the measurements of n?, n¥ i =1,2,
are the engagement enemy actions (which must be detected), Q, M, V, N are suitable weighting matrices,
and -y is a threshold parameter representing the desired attenuation of the noise on the residual.

The experiments are performed by letting each of the parameters af, o2 ,fyﬁ,’yﬁ,yﬁ,'y«ﬁ in (10.1)
to differ — by increasing quantities — from their nominal values &2,&%,78,75, 78 ,5&,, which are used
in design of the filter (10.2).

10.5 Example of experiment

We illustrate in what follows an example of experiment in which the actual value of the parameter af
is equal to, respectively, 110%, 120%, 130%, 140% and 150% of its nominal value &2. The energy of the
noise corrupting the measurements of nZ, i = 1,2, is equal to 15% of the energy of nB, i =1,2. Figures

10.5 and 10.6 depict the responses to Action 1 and, respectively, Action 2 of the game-theoretic filter.

Figure 10.5 shows how the response to Action 1 tends to evolve away from zero even though Action
1 is not taking place (first 30 units of time). However, the first performance signal is still “sensitive”
to the occurrence of Action 1, as it is demonstrated by the “bump” at time ¢t = 30 units of time (when
Action 1 occurs). In Figure 10.6, a similar outcome is reported. Indeed, the figure shows a nonzero
performance signal in absence of Action 2 and a “bump” at time t = 50 units of time (when Action 2
occurs). The “bump” becomes less evident as the amount of uncertainty increases, causing the detection
of Action 2 to be more difficult. We note, however, that the uncertainty on a‘IB does not influence the
“non-interaction” property of the two performance signals. As a matter of fact, the first performance
signal is not “sensitive” to Action 2 and the second performance signal is not “sensitive” to Action 1.

183

i
i
i

Uncertainty on o, - Performance Signal 1

0.5 T T T T T T T
//N” M‘M\\‘M
o TN 110%
__05 | | i I i H i
0 10 20 30 40 50 60 70 a0 100
0.5 T T T T T T T
Om 120%
_0'5 1 ! i 1 | | |
0 10 20 30 40 50 60 70 a0 100
0.5 T T T T T T T
O.W 130%
-05 | 1 i 1 1 i 1
0 10 20 30 40 50 60 70 90 100
0.5 T T T T T T T
ow 140%
05 I | | L ! 1]
0 10 20 30 40 50 60 70 90 100
0.5 T T T T T T T
Ow 150%
-05 I \ |] ! 1 1

10 20 30 40 50 60 70

90 100

Figure 10.5: Response to Action 1 of the detection filter in the presence of uncertainty in the parameter
;. The actual value of a; varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

184

Uncertainty on o . Performance Signal 2

0.02 T T T T T T T T T
0.01r B
0] i |) I i 1 L |
0 10 20 30 40 50 60 70 80 a0 100
0.02 T T T T T T T T T
0.017 %MWW
0 i ! | I | 1 ! i i
0 10 20 30 40 50 60 70 80 90 100
0.04 T T T T T T T T T
0.02} -
0 ; 1 | \ i ! WWT\/\W
0 10 20 30 40 50 60 70 80 90 100
0.04 T T T ¥ T T T T T
0.02r =

10

20

30

40

50

60

70

80

90

100

110%

120%

130%

140%

50%

Figure 10.6: Response to Action 2 of the detection filter in the presence of uncertainty in the parameter
o. The actual value of oy varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

185

Uncertainty on o, = Performance Signai 1

1 . : e
05 TS 1
) A<ﬁ,,.n_/ —— 10%
[" " 1 1 1 i A 1 i 1 o
0 10 20) 40 50 60 70 80 90 100
1 : : -
0s — \\ 120%
T e
o
0 10 20 30 40 50 60 70 80 %0 100
1 . . . : . 8 :
—~— \\\
L 1 130%
05 ~—
B N
o . .) \
0 10 20 30 40 50 60 70 80 % 100
2 . . - - v :
ok T e 1 ra0%
- . . .
0 10 20 30 40 50 60 70 80 a0 100
2 : . - T - . : .
/f'—‘ R
[} T 150%
"
) 10 20 30 40 50 60 70 80 %0 100

Figure 10.7: Response to Action 1 of the detection filter in the presence of uncertainty in the parameter
ay. The actual value of ay varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

10.6 Results of the experiments

In the remaining experiments of this series, we test the influence of the uncertainty in the parameters
ol vE,vE, 74, v&,. The responses of the filter are given in Figures 10.7 to 10.16. The actual value of
each parameter is taken equal to, respectively, 110%, 120%, 130%, 140% and 150% of the corresponding
nominal value. We set the value of each parameter in the model equal to one of the actual values and
perform a simulation. The noise on the measurements is as specified in the previous section.

From the analysis of the figures, it is possible to observe that three negative phenomena emerge due to
parametric uncertainty. The first one is that the performance signals tends to evolve away from zero
even when no event is occurring (see Figures 10.7 and 10.8). The second phenomenon is the loss of the
“non-interaction” property of the two performance signals. For instance, the second performance signal
tends to react to the occurrence of Action 1 (see Figure 10.10 at time £ = 30 units of time), which may
lead to infer erroneously the occurrence of Action 2 when Action 1 is actually taking place. The third
phenomenon is a reduction in the capability of the filter to “emphasize” the event signal, as it is evident
from the decreased size of the “bumps” in all the performance signals.

10.7 Conclusions and Recommendations

The game-theoretic detection and isolation filter, although proven to be effective in the selective attenu-
ation of measurement noise, has been shown to be relatively sensitive to uncertainty in the parameters
of the model which describes the battlefield. In particular, a progressive degradation of the effective-
ness of the detection filter has been observed as the difference between actual and nominal values of the
parameters increases.

I CONCLUSIONS - HYPOTHESIS 10 |
The data obtained from this set of experiments show a progressive
degradation of the filter performance as the difference between actual
and nominal values of the parameters increases.

186

Uncertainty on a, - Performance Signal 2

002 : . . T T : T . T
ol 110%
002 A ;
0 10 20 30 40 50 60 70 80 90 100
005 : T T . T T T T .
005 : . . ;
0 10 20 0 40 50 60 70 80 90 100
01 T : . : T T T . :
o e A30%
[
o1 . ; ; . . . ; . .
10 20 30 40 50 60 70 80 s 100
0.1 . T . T T : . : .
0 M 140%
04 :
10 20 30 40 50 60 70 80 %0 100
01 . . . v T T y T .
- e T
o PR 150% ;
e
N
o1 x . " " . . . : .
0 10 20) 40 50 60 70 80 30 100

Figure 10.8: Response to Action 2 of the detection filter in the presence of uncertainty in the parameter
ay. The actual value of ap varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

Uncertainty on B‘ M Parormance Signal 1

05 r . . : :
OWM 110%
05 L X . .
10 20 30 40 50 60 70 80 % 100
05 ; T . . : . v : ;
/“’\—V—_’“’\/‘/—WNM
ok~ 4 120%
05 . . ;)
o 10 20 30 40 50 60 70 80 90 100
05 " . - . . ; : " :
OM«W‘,/M 130%
05
10 20 30 40 50 50 70 80 0 100
05 . T T " . s . T -
T o
08
10 20 30 40 50 60 70 80 %0 100
05 ' . . T v

i 150%

Figure 10.9: Response to Action 1 of the detection filter in the presence of uncertainty in the parameter
B11. The actual value of 81 varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

187

Uncertainty on " Performance Signal 2

0.05 v T v v v v T : .
et e
1) NS NI S T 110%
~0.05 " . L . L) L L .
10 20 o 40 50 60 70 80 90 100
0.05 . T v : v T T T T
o e T e e e, 120%
~0.05 . L L L .) . s .
10 20 30 40 50 §0 70 80 90 100
0.05 : T T : v : T T T
Py S /“‘*ﬂ'\r—«-—vd’\/—v\\—/m_\ d 130%
-0.08 . N L L L L : . s
0 10 20 30 40 50 60 70 80 90 100
005 : : . : ¥ . T r .
MWM
N e 140%
-0.05 f L .) . .) L L
[\ 10 20 30 40 50 60 70 80 90 100
0.05 v ¥ T T T v v v T
0 e T T e s
-0.05 . . s L L L L . L
° 10 20 30 40 50 60 70 80 90 100

Figure 10.10: Response to Action 2 of the detection filter in the presence of uncertainty in the parameter
Bi1. The actual value of §1; varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

Uncertainty on Du - Parfarmance Signat 1

2 r . T . -
- 4 110%
2 : ' : :)

0 10 20 30 40 50 80 0 80 % 100

2 . T T : . : . 8 :

I | 120%
2 : .

o 10 20 30 40 50 60 0 80 %0 100

2 : : - - 8 r T v -

[T

o _ 4 130%
" A . : . : . . . :

0 10 20 30 40 50 60 70 80 % 100

2 . : 8 T : 8 T - :

—’__‘-——__/’

0 T 140%
2 L :

0 10 20 30 40 50 &0 0 80 % 100

2 : : T : . : : : :

o

o —e { s0%
2 . . : . A . . ; L

0 10 20 30 40 50 60 7 8o % 100

Figure 10.11: Response to Action 1 of the detection filter in the presence of uncertainty in the parameter
Bi2. The actual value of 8,3 varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

188

Uncertainty on ﬂ‘z - Pedormance Signal 2

05 T T T ¥ T T

-05 ¢ L i A) 5

05 T T T T T T

-0.5 s 1 L L L 1

05 T T ¥ T T Y

—05 L L L : s '
0
05 T T T T T T

J

05 L { L A A s
0.5 Y T T T T T

10 20 30 40 50 60

Figure 10.12: Response to Action 2 of the detection filter in the presence of uncertainty in the parameter
B12. The actual value of B2 varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

Uncertainty on Bza ~ Performance Signal 1

- L .
o 10 20 30 40 50 60
1 . v T v T T
J ——
—
Q
- . . . s . .
[10 20 30 40 50 60
1 : T T : T .
e
—
4 -—«__a/ T
= . . . L L L
0 10 20 30 40 50 60

) 0 10 20 30 40 50 80
| | f%\m
0 —— 3
1 : . . L L .
[10 20 30 40 50 60

Figure 10.13: Response to Action 1 of the detection filter in the presence of uncertainty in the parameter
B21. The actual value of 83 varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

189

110%

100

120%

130%

140%

150%

110%

120%

130%

§
;

Uncenainty on ﬂzw - Perfarmance Signal 2

0.05 T v T v ¥ T : ! T
0 b e et T N el 410%
-0.05 L L . L . L . L)
[10 20 30 40 50 60 70 80 80 100
0.05 y . T . y Y T v T
D T T s 120%
-0.05 . . : .) . . .)
0 10 20 30 40 50 60 70 80 90 100
0.05 T T . T T T r v T
0 b s e ey s e oo 130%
N
-0.05 . L ; . . ; . . L
0 10 20 30 40 50 60 70 80 90 100
0.05 T T T T : v Y r T
o 140%
-0.05 . . s L L
0 10 20 30 40 50 60 70 80 %0 100
0.05 T . T T T T : T y
0 WW 150%
~0.05 L . , 1) L s . .
0 10 20 30 40 50 60 70 80 % 100

Figure 10.14: Response to Action 2 of the detection filter in the presence of uncertainty in the parameter
B12. The actual value of B, varies from 110% (top graph) to 150% {bottom graph) of the nominal value.

Uncertainty on 522 - Performance Signal 1

[N 3 110%
05 L) : A L \ . L L
0 10 20 30 40 50 60 70 80 90 100
05 . T T T : .
/ \\'\M*\'-\,
(1] e 1 120%
~05 s s L A L L i 2 L
10 20 30 40 50 80 70 80 80 100
0.5 T T ¥ T T Y T T
"
T]
o—/—m.,\,“/ 4 130%
-05 L L L L . L : L L
10 20 30 40 50 60 70 80 90 100
05 T T : eSS S T
W’\“\«\
[S 4 140%
~0.5 4 " 2 L \ L . 1 L
10 20 30 40 50 80 70 80 S0 100
05 T T T T T T T T
T
[1] o U 150%
-05 L L s \ 2 L L) L
] 10 20 30 40 50 60 70 80 80 100

Figure 10.15: Response to Action 1 of the detection filter in the presence of uncertainty in the parameter
Ba2. The actual value of B3 varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

190

Uncertainty on 522 - Parformance Signal 2

G.01 T T T T T T T T T

OWWWWWWWWW 110%
-0.01 4 5 1 L L i i) '

1] 10 20 30 40 50 80 70 80 80 100
0.01 T T T T T T T T T

OWWW\/WN’\W\«’NWWWAWL 120%
-0.01 L A L 1 L 1 1 L n

o 10 20 30 40 50 60 70 80 90 100
0.0t T T T T T T T T T

omw\jwwwwwwvv‘w 130%
-0.01 L L 1 L | L L L L

0 10 20 30 40 50 60 70 80 80 100
0.0t ¥ T T T T T T T T

OMMMV\WWWWWW 140%
. , X . . ,

0 10 20 30 40 50 60 70 80 20 100
0.01 T T T T T T T T T

bty i, s A VT Wi Sttt pp pd s
o0t X

0 10 20 30 40 50 60 70 80 90 100

Figure 10.16: Response to Action 2 of the detection filter in the presence of uncertainty in the parameter
B22. The actual value of (2 varies from 110% (top graph) to 150% (bottom graph) of the nominal value.

191

e e

—

192

Bibliography

[1} Washington University, Mission Dynamics Continuous-Time Model, Version 2.42.

[2] C. De Persis, A. Isidori, “On the observability codistribution of a nonlinear system,” Systems &
Control Letters, 40, 297-304, 2000.

[3] C. De Persis, A. Isidori, A geometric approach to nonlinear fault detection and isolation, to appear
as a regular paper on IEEE Transactions on Automatic Control, Sept. 2001.

[4] C. De Persis, A. Isidori, “On the design of fault detection filters with game-theoretic-optimal sensi-
tivity”, submitted.

[5] C. De Persis, A. Isidori, “Experiment 9: Detector Performance under Noise”, Chapter 9, Final
Report, DARPA JFACC Project, Washington University.

193

194

Chapter 11

Experiment 11: Method of
Characteristics

11.1 Executive Summary

The purpose is to verify that the solution computed by the Sequential Linear-Quadratic Method (SLQM)
is the same as the Nash solution computed by the Method of Characteristics. We verified that the solu-
tions computed by the Sequential Linear-Quadratic Method (SLQM) are the same as the Nash solutions
computed by the Method of Characteristics under several scenarios. Also, systematic tests have been per-
formed to study robustness under two ways of enforcing constraints: penalties and explicit enforcement.
Specifically, weights for velocities, engagement intensities, final numbers of platforms and targets, as well
as maximum rated speeds have been varied. The results show that the trajectories are quite similar in
shape.

11.2 Purpose of the Experiment

The purpose is to verify that the solution computed by the Sequential Linear-Quadratic Method (SLQM)
is the same as the Nash solution computed by the Method of Characteristics.

11.3 Hypothesis to Prove or Disprove

Both the plant and internal models are the same, i.e., the Mission Dynamics Continuous-time Model
(MDCM). The Method of Characteristics, which can be used to determine state and input trajectories
of the Nash solution given the final states, verifies that the solution computed by the Sequential Linear-
Quadratic Method (SLQM) is indeed the Nash solution.

11.4 Experiment Setup

Two scenarios will be created. The Nash solution of these will be calculated with SLQM, obtaining state
and input trajectories. The final state of each solution will be used to solve the two-point boundary value
problem (TPBVP) of game theory, by integrating the Hamiltonian system, (which is derived using the
method of characteristics for partial differential equations), backwards in time. If the SLQM solution is
indeed the Nash solution, it should be the same as the solution of the TPBVP.

195

11.5 Experiment Results

We consider the simplest case: Each of the Blue and Red forces has one unit. Both the Blue unit (B1)
and the Red unit (R1) have 10 platforms. Since each unit has a 4-dimensional state and a 3-dimensional
control input, the entire model has a 8-dimensional state and a 6-dimensional control input. In this
experiment, each force has two objectives: i) to reach its specified fixed target; and ii) to reduce the
number of enemy platforms while preserving the number of its own.

Numerical simulations have been performed for two different scenarios: “joust” and “cross”. In
“joust”, blue and red trajectories tend to be parallel to each other, whereas in “cross”, they intersect
each other.

In “joust”, there is a final terminal cost ¢ on the numbers of platforms in the payoff function. The
parameter values are a? = o' = 0.05, b% = b = 0.0, and p? = pf = 0.0. When control penalties are
used, the parameter values are Ryy = RE = RP = RE = REF =300, and R, = R} = R} = 75. The
initial positions are given by the following coordinates relative to a theater of operations of size 100 by
100: (20,50) for B1 and (80,52) for R1. The location of targets are given by the following: (80, 52) for
B1 and (20,50) for R1.

In “cross”, there is no terminal cost ¢ in the payoff function. The parameter values are af =aft =
0.05, b = 0.005,b"% = 1.5, and p? = p® = 0.0. When control penalties are used the parameter values
are Ry = RE = RP = RF = R = 400, and R, = REZ = RF = 100. The initial positions are given
by the following coordinates relative to a theater of operations of size 100 by 100: (20, 50) for B1 and
(50,80) for R1. The location of targets are given by the following: (80, 50) for B1 and (50, 20) for R1.

For each scenario, three different cases have been tested. In all cases, there are penalties on the
velocities. For engagement intensities, we test penalties without explicit constraints, explicit constraints
without penalties, both penalties and explicit constraints. The effects of varying penalty parameters for
velocities and engagement intensities are also studied.

11.5.1 Joust

Case 1: Penalties only, without explicit constraints on velocities or intensities. (Figures 11.1-11.3)

Case 2: Explicit constraints on intensities without penalties, no constraints on velocities. (Figures 11.4-
11.6)

Case 3: Both penalties and explicit constraints on velocities (of type A) and intensities. (Figures 11.7-
11.9)

Case 4: Change penalty for case 3. Now R, = 240, and R, = 55. (Figures 11.10-11.12)

196

90

85

5

70

> 65

60}-

55

T

50

45

40

"Red Target

B: Blue Target

Red Unit

O

10

20

30

40 50

Figure 11.1: Trajectories

197

60

70

80

90

Figure 11.2: Engagement Intensities and Number of Platforms

198

1.5 1.5
m x
K k
>
G 1 2y
C o
] 2
£ £
2 2
i 05 i 05
o O
= o]
m x
0 0 .
0 5 10 15 20 0 5 10 15 20
14 14
o 121 o« 12}
3 =
] 0
e 10 g 10—
g \ g
© 8 © 8
o a
S 6 B 6
o i
4 4
2 ‘ - 2 . .
0 5 10 15 20 0 5 10 15 20
Time t Time t

o
T & T
3 b
I I
1" o I H
i1 = I
(' I
: I
I o 1t
[\B (Y
[[
oy b
- -
- T \\\w\
\ _ ! [
\ | ! [
| | ! |
L : . ! ;
v = © © o = o v - 0o o 0 !
paadg-A anig peadg-A pay
o
o~
[Te)
-
1O
o
= s
. o .
w = w o w = w - o o ©n w0
— o o ! 4_.. - o o 4_..

i
paadg-X anig

i
paadg-X pey

20

15

5

15 20

10
Time t

Time t

Figure 11.3: Velocities

199

90

851

80

75

1

> 65

60

55

T

50

40

Blue Unit

B: Blue Target

Red Unit

O

10

30 40 50

Figure 11.4: Trajectories

200

60

70

80

90

o
~
7o}
-
=
-
T}
o

- o

o ‘Aususiu| Buli4 pay
o
N
0
-
o
=
40

o

v A o <o

-

Lol
gt ‘Ausuayuy Buui4 enig

A.* N o o 6 <t o
- - A
m: ‘suofield pay
¥ N © ® © ¥ o
m: ‘swiojeld anig

15 20

10
Time t

15 20

10
Time t

Figure 11.5: Engagement Intensities and Number of Platforms

201

20

T
!
I
I o
't -
1"
[-
P)
- CE
-
[
Iy
47
- w
{ i
\ |
i |
| |
- : - o
w - 0w o v 0
- e g T
paadg-A anig
[=]
o~
wn
(]
CE
T
— o
(=]
B - o W 0
- o ﬂ JI
peaadg-x anig

[=]
T ~
A
il
i ©
b -
I
[
[o
[-
1\
[
*\
-7 [To]
| |
\ |
| !
L, ! o
0 -— n [n [t}
- © ? T
paadg-A pay
o
o~
o
=
jo
123
o
v - 1w o 0
-— o o A_I

i
pasdg-X pay

Time t

Time t

Figure 11.6: Velocities

202

90

80

70

> 60

50

40

30

Backward integration

T

@®R: Red Target

B: Blue Targét

ed Unit

10

20

30

40

50

203

60

70

Figure 11.7: Trajectories

80

90

100

110

1.5 1.5
(Dk: !xli
= .
s 1 £ 1}
o o
2 2
£ £
o o
£ <
i 0.5 ir 0.5
o °
] @
o w
0 + 0 .
0 5 10 15 20 0 5 10 15 20
14+ 14}
m 12 x 12}
A e
2] 2]
E 10 E 10
o \ £
© 8 © 8
o 0.
[B !
% 6 & 6
4 41
2 . 2 .
5 10 15 20 0 5 10 15 20
Time t Time t

Figure 11.8: Engagement Intensities and Number of Platforms

204

1.5

[e] o
T & T &
] i
i i
I 1w n o)
" - I -
1 1
1 n
Iy o I =)
P - A -
[[
L) .
-l o . - o
b .
! | |
P! |
H o L S (e
0 W © 1w < =0 g - w o n = 0
" ° ¢ T - S ¢ ' 5
poadg-A onig pasdg-A pay
(] (o]
o~ ™~
lwo 0
- -
o o
- -
> © T
N : o . o
o @ = 0 8w - v o ©» < W0
o o o« - IS s ' 7

| |
vmmawuxm:_m vmmamlxcmm

Time t

Figure 11.9: Velocities
205

Time t

Backward Integration

90 T T T T T T T T T T

>60

Red Unit

50

T

10 20 30 40 50 60 70 80 90 100

Figure 11.10: Trajectories

206

110

— o

o ‘Aysusiul Buuid pay
el — e} o
- o

gt ‘Ansusiuy Buni4 snig

20

15

10

20

15

10

< N o © ©w <t ™~
- - -

m: ‘suofield pey
~ o~ o =] © <t o~
bt

m: ‘suuope|d ang

15 20

10
Time t

15 20

10
Time t

Figure 11.11: Engagement Intensities and Number of Platforms

207

¢

\
|
!
f

20

15

10

-

|
|
|
|
|
n o
© i
psadg-A 8nig

@
=

-1.5

20

15

10

1.5

.

0 o w1
(=] o

I
peads-X anig

-1.5

20

]
=
I
" [
_ o
\
Fy
by
Fy lo
(I -
J--
- [
| 10
|
[
I
. . . o
- o n_u ! by
pasadg-A pay
(o]
N
]
0
o
-
Yo
o
0w - v o W v~ W0
- o o ! -
i
pasdg-X poy

Time t

Time t

Figure 11.12: Velocities

208

Backward Integration
30 T T T T T T 1

80 T

60 =
>50 Blue Unit @: Blue Tafget
40 -
30 Red Unit -

20

R: Red Target -

1 0 i 1 | t i i 1
10 20 30 40 50 60 70 80 90

Figure 11.13: Trajectories

11.5.2 Cross

Case 1: Penalties only, without explicit constraints on velocities or intensities. (Figures 11.13-11.15)
Case 2: Explicit constraints on intensities without penalties, no constraints on velocities. (Figures 11.16—
11.18)

Case 3: Both penalties and explicit constraints (of type A) on velocities and intensities. (Figures 11.19-
11.21)

Case 4: Change penalty for Case 3. Now R, = 310, and R, = 10. (Figures 11.22-11.24)

209

15 15
(l:)t= [Kg
2 >
é 1 % 1
E E
g 2
T 0.5 i 05
] ?
@ 2

0 0 .

0 5 10 15 20 0 5 10 15 20

14 14
o 12} x 12
e <
£ 10 210
& S
T 8 \ 5 8
o a
38 6} 8 6
m [va

4 4

2 2 ,

0 5 10 15 20 0 5 10 15 20
Time t Time t

Figure 11.14: Engagement Intensities and Number of Platforms

210

20
20

15
15

10
10

1.5
1
5
o+ — — —

\
0 - W
g ' 7

i
paadg-A anig paads-A pay

20
20

15
15

10
10

> >

o [as]

0 - [T] [~ R [fe] v - [fo) o [Te} - (e}

- T e T8 T R
peadg-X 8nig peadg-X pay

Time t

Figure 11.15: Velocities
211

Time t

90

80

70

60

> 50

40

30

20

10

10

Backward Integration

¥

T

T T T

Blue

Red Unit

@: Red Target

@: Blue Target

20

30

40 50 60

Figure 11.16: Trajectories

212

70 80 90

15 15
mg' n::
= 3
Z Z
g I3
E kS
g 2
i 0.5 £ o5
g 3
& ©
0 ' 0
0 5 10 15 20 0 5 10 15 20
20 20
“c 15f %= 15
£ €
[¢] O
= b=
3]
S 10 S 10
E B
m [v'4
5t 5l
0 5 10 15 20 0 5 10 15 20
Time t Timet

Figure 11.17: Engagement Intensities and Number of Platforms

T
i
]
1
1
|
I
i
t
N
I /»
L
]
O
b
. o .
w0 - n o e} Al n
paadg-A anig
cw - N (o] Te] Al [Te)
- o s '

i
paadg-X anig

15 20

10
Time t

15 20

10
Time t

I
[}
i
H
H
[
b
[
A
PN
| N
.-
[
[
o\
. P
n - [Te] (=) [Te) - [Fe}
= o s 5
poaadg-A pay
w - wn [} uwy Rl [Te]
- S s ! 5

poads-X pay

15 20

10
Time t

15 20

10
Time t

Figure 11.18: Velocities

214

Backward integration
80 T T T T T T T

80 B

701 .

B: Blue Target

> 50 Blue Unit o] 1

30

Red Unit =

20

@R: Red Target .

10 20 30 40 50 60 70 80 90

Figure 11.19: Trajectories

215

o
[sY)
n
Al
o
bt
n
. ; =
- o
ot ‘Ansusyuf Buiy4 pay
(]
(a8
]
b2
(=)
™~
wn
o
« o

o ‘Aysusiug Bui4 anig

<t oN [o0 ©w < ~N
- - -

m: ‘suniofield pay
4 o © © © < N
s

m: ‘swloyeld anig

15 20

10
Time t

15 20

10
Time t

Figure 11.20: Engagement Intensities and Number of Platforms

216

I

i

|

|

|

[

|

i

i

N

P

-
i

|
y
]

P 5 o 0 [te]
- e ? T
paadg-A enig
>
© rﬁo © 0
- o o by

|
paadg-x sn|g

20

15

10

20

15

10

-

|
]
!
[
i
!
|
L

o

e
-

-

\
0 0
© ?

peads-A pey

-

2
At
i

>

b
-

s

0w © o
(=] (=}

[
peadg-xX pay

-1.5

15 20

10
Time t

15 20

10
Time t

Figure 11.21: Velocities

217

Backward Integration
120 T T T T T T T T

T

110

100 \

90

T
——

80

70

60 /
B: Blue Target

50 it O

30r Red Unit

20+ (R: Red Target

10 20 30 40 50 60 70 80

Figure 11.22: Trajectories

218

] - 0
~— o
o ‘Ausueiu) Bulig pay
0 - 0
-~ o

g ‘Ausueyy) Buuiy enig

20

15

10

20

15

10

¥ W o © © < o
- -

mc ‘suiiofiejd pey
< o o o] ©w <t o
- - -

mc ‘suliofiejd anig

15 20

10
Time t

15 20

10
Time t

Figure 11.23: Engagement Intensities and Number of Platforms

219

20

15

10

20

15

10

{
|
|
|
i
i
I
|
-
/\
I - -
q
1]
[}
I
1
[t} - [fe} =) [t} = n
- I} ﬂ ! 1.-
paads-A anig
- [o ! <

[
peadg-x amg

20

1
]
I
I o
[-
I
[
P o
P~ -
! ~
o (
} \ 10
i \
! \
|
, , X o
w - 0 O v 0
- e ? T
paads-A pay
(=]
o
iRty
> N
[Fo]
o
n - 0 °o B 0
h © ? T
poads-X pay

Time t

Time t

Figure 11.24: Velocities

220

Remark: Note that in some cases where constraints are enforced, engagement intensities are cut off at
their limits (Agures 9, 12, 21, 24, and figure 13 for velocities).

11.6 Analysis

Systematic tests have been performed to study two ways of enforcing constraints: penalties and explicit
enforcement. Also, systematic tests have been performed to study robustness. Specifically, weights for
velocities, engagement intensities, final numbers of platforms and targets, as well as maximum rated
speeds have been varied. The results show that the trajectories are quite similar in shape.

11.7 Conclusions and Recommendations

We verified that the solutions computed by the Sequential Linear-Quadratic Method (SLQM) are the
same as the Nash solutions computed by the Method of Characteristics under several scenarios.

221

222

Bibliography

[1] H.W. Knobloch, A. Isidori and D. Flockerzi, Topics in Control Theory, DMV Seminar, Band 22,
Birkhduser, Basel, 1993.

[2] H. Mukai, Y. Sawada, I. Tunay, Washington University JFAAC Team and Paul Girard, SAIC,
Mission Dynamics Continuous-time Model (Version 2.55), a working report, Washington University,
2000.

[3] H. Mukai, et al., Sequential linear quadratic method for differential games, in Proceedings of the 2nd
DARPA-JFACC Symposium on Advances in Enterprise Control,pp. 159-168, Minneapolis, MN, July
2000.

[4] H. Mukai, et al., Game-theoretic linear-quadratic method for air mission control, in Proc. 39th IEEE
Conf. Decision and Controlpp. 2574-2580, Sydney, Australia, Dec. 2000.

223

e e TR e

224

Chapter 12

Experiment 12: Game Flow Model

12.1 Executive Summary

The purpose of this experiment was to validate the Game Flow approach. Validation is meant in the
sense that the game theoretic solution engine (i.e., the Sequential Linear — Quadratic algorithm), acting
on the Game Flow model, converges to a Nash solution that generally improves the value of the payoff
function.

The Game Flow model simulates a two-force game where the assets of each force, say the blue or red
forces, are distributed over a large geographical area.

In this experiment, the game area was a square divided into 64 square cells. At the start of the game,
the two forces were spread uniformly over the entire game area, but the total strength of the blue force
was only two thirds the total strength of the red force. To counter this mismatch, the attack range of the
blue force was larger, and the cost of movement for the blue force was lower than that of the red force.

The goal of each force was to reach the end of the game with a minimum loss of their own strength,
while inflicting maximum damage to the opposing force. Also, each force assigned more value (larger
weight) to the cells located in the middle of the game area than to the cells located near the boundaries, so
higher score might be earned by finishing the game with heavier strength concentration in more valuable
cells. Finally, movement of assets across the game area was penalized, so economy of movement was also
reflected in the final score of each force.

The game was carried out for a specified amount of time, with the phases of the game, i.e., asset
movement and attack, evolving uninterrupted for the duration of the game.

The SLQ algorithm was used to find a Nash equilibrium solution for the game. In this experiment,
the solver was stopped after 10 iterations, when the error (i.e., the norm of the velocity updates) was
approximately one percent of the original error. At this error level, further iterations had an insignificant
effect on the solution.

Experimental results show that the Nash equilibrium solution found by the SLQ algorithm, greatly
improved the performance of the two forces with respect to the value of the payoff function selected for
this experiment.

Qualitatively speaking, we can say that, in this scenario, the superiority of the blue force in the attack
range, and its lower cost on movement prevailed, allowing the blue force to keep the red force out of the
most valuable cells in the middle of the game area.

12.2 Purpose of the Experiment
The Game Flow model simulates a two-force game where the assets of each force, say the blue or red force,
are distributed over a large area. The game area is divided into cells so that the strength concentration

of the blue (resp. red) force in a cell is defined as the amount of blue (resp. red) asset of a single type
contained in the cell divided by the area of the cell. The blue and red forces can move their respective

225

assets continuously during the game, by specifying transport velocities for each pair of contiguous cells,
i.e., the rate at which the assets are shifted from one cell to the next.

At the start of a game, the two forces are assigned an initial strength distribution over all the cells in
the game area. As the game proceeds, the initial strength distributions evolve in different ways, but the
total strength of each force can only decrease due to two types of strength loss mechanisms.

The first type of loss mechanism is characterized by a local attrition parameter associated with each
cell. This may represent loss due to mechanical failure or local weather.

The second type of loss mechanism for one force represents attacks from the opposing force. Attacks
are carried out continuously and simultaneously by the two forces during a war game. For example, the
blue assets contained in one cell at any one time will attack simultaneously all the red assets which are
at that time in all the cells within the attack range of the blue force. The actual damage sustained by
the red force in each cell will depend on the strength concentration of the blue force in the attacking cell,
the strength concentration of the red force in the cell that is being attacked, and on the distance between
the two cells.

The game is carried out for a specified amount of time, with the three phases of the game, i.e., asset
movement, attrition and attack, evolving uninterrupted for the duration of the game.

The goal of each force is to reach the end of the game with a minimum loss of their own strength,
while inflicting maximum damage to the opposing force. Also, each force may assign more value (larger
weight) to some of the cells in the game area than to other cells, so a higher score might be earned
by finishing the game with heavier strength concentration in more valuable cells. Finally, movement of
assets across the game area typically costs valuable energy, so economy of movement is also reflected in
the final score of each force.

The purpose of this experiment was to validate the Game Flow approach. Validation is in the sense
that the game theoretic solution engine (i.e., the Sequential Linear-Quadratic algorithm), acting on the
the Game Flow model, converges to a solution that generally improves the value of the game, i.e., the
payoff function value.

12.3 Hypothesis to Prove or Disprove

The hypothesis that we tried to prove in this experiment is: The Game Flow model and the SLQ algorithm
constitute a feasible tool for solving differential games invloving a very large number of opposing units,
distributed over a geographical area.

12.4 Experiment Setup

We apply the Game Flow method to find a solution for the game described by the following scenario.

The game area is a square of unit length in each side, and is divided into 64 squares to form an 8 x 8
grid.

The game area may represent some geographical area where the conflict takes place. It should be
expected then, that certain local features of the game area will have an effect on the evolution of the
game. For example, the energy that the forces must spend to move their respective assets should vary
as they attempt to go across different types of terrain: dessert dunes, marshy land, dense forests, etc.
Similarly, different features of the game area might affect the attrition rate sustained by the forces.

In this experiment, the game area consists of two types of terrain: one smooth area, through which
movement of assets is relatively easy, surrounded by more difficult terrain. A map of the game area
is shown in Figure 12.1, with the smooth area indicated in dark color. Notice that the difficulty in the
terrain need not be the same along the horizontal and vertical directions, even locally. In this experiment,
for example, it is clear that to go from cell (4,4) to cell (3,5), the path that goes through cell (3,3) is less
expensive than the path that goes through cell (3,5).

To simplify visualization of the experiment results, attrition not caused by the enemy is not included
in this experiment.

226

Running cost on velocity

Figure 12.1: Map of the game area: light colored cells indicate smooth area. The white contour line
marks the boundary between the two different regions.

227

The blue force has an initial strength of 128 units spread uniformly on the game area. The red force
has an initial strength of 192 units, also spread uniformly on the game area.

We assume that each force has a symmetric attack efficiency function as depicted in Figures 12.2 and
12.3. The Figures show that the red force is slightly more powerful than the blue force at close range.
On the other hand, the blue force has a longer range, covering an area of approximately 3 x 3 cells.

0.6

Figure 12.2: Efficiency of attack for the blue force.

The mission for the blue force is defined as: (a) reach the end of the game with as much strength as
possible; (b) place as many assets as possible in the four cells located in the middle of the game area; (c)
remove the red assets from the four central cells, and block any attempts by the red force to move its own
assets into that area; (d) continuously try to minimize the strength of the red force; and (e) minimize
the control effort in accomplishing the first four items of this mission statement.

Similarly, the mission for the red force is defined as: (a) reach the end of the game with as much
strength as possible; (b) place as many assets as possible in the four cells located in the middle of the
game area; (c) remove the blue assets from the four central cells, and block any attempts by the blue
force to move its own assets into that area; (d) continuously try to minimize the strength of the blue
force; and (e) minimize the control effort in accomplishing the first four items of this mission statement.

While the respective mission statements for the blue and red forces may look the same, each force
can assign different priorities (weights) to the different mission tasks. For instance, in this experiment,
the cost for the blue force associated with movement of assets over the smooth game area is equivalent to
three fourths the corresponding cost for the red force. This means that the blue force has more freedom
of movement over the game area than the red force.

As for the values (weights) assigned by each force to the different cells in the game area, the respective
mission statements imply that both forces regard the central cells more valuable than the cells located
near the edges of the game area. For this experiment, we assume that the two forces assign equal value
to each cell, so that a common map of the real estate value is shown for the two forces in Figure 12.4.

228

X Y

Figure 12.3: Efficiency of attack for the red force.

Running cost Terminal cost

Figure 12.4: (a) Running cost associated with instant values of the strength concentration in the cells.
(b) Terminal cost associated with final values of the strength concentration in the cells. Lighter color
indicates higher value.

229

Table 12.1: Payoff function value for the initial guessed solution

Running Running Running Terminal Game
Force X-vel. Y-vel. Strength Strength Cost

Blue 0 216 -259.04 -469.68 -512.73
Red -246 0 523.32 961.43 1238.76
Total 726.03

12.5 Experiment Results

The solution technique (SLQ method) is iterative and it improves the current solution estimate at each
iteration. Hence, to solve the game, a guess has to be made for the velocity distributions in the horizontal
and vertical directions that the forces continuously apply. The initial choice of the velocity distributions
affect the rate of convergence in the iterative solution of the game, but in our experiments it did not
have significant effects on the final outcome of the game. So, in the experiment we report here, we
arbitrarily assigned a uniform velocity distribution parallel to the horizontal direction for the blue force,
and a uniform velocity distribution parallel to the vertical direction for the red force.

The value of the game corresponding to the initial non-optimum solution is shown in Table 12.1,
broken into the individual cost components.

The SLQ algorithm was used next to find a Nash equilibrium solution for the game. In this experiment,
the solver was stopped after 10 iterations, when the error (i.e., the norm of the velocity updates) was
approximately one percent of the original error. At this error level, further iterations had an insignificant
effect on the solution. Convergence of the algorithm is illustrated in Figure 12.5, which shows the error
against iterations.

0.02 T T T T ¥ T T T

0.018

0.016

0.014

0.012

0.01

Vel. Norm

0.008

0.006

0.004

0.002

Figure 12.5: Convergence of SLQ algorithm

The value of the game corresponding to the Nash equilibrium solution is shown in Table 12.2, broken

230

Table 12.2: Payoll [unction value for the Nash equilibrium solution

Running Running Running Terminal Game
Force X-vel. Y-vel. Strength Strength Cost
Blue 14.66 10.89 -264.24 -497.18 -735.86
Red -18.99 -20.06 518.90 1013.80 1493.66
Total 757.80

into the individual cost components.

Clearly, the Nash equilibrium solution found by the SLQ algorithm, greatly improves the performance
of the two forces in terms of the value of the payoff function selected for this experiment. Recall that t
he blue force tries to minimize the total payoff while the red force tries to maximize it.

Figures 12.6 and 12.7 show the initial strength distributions for the blue and red forces. The distri-
butions are identical and uniform, so the shade (color) is uniform over the area. The direction of asset
movement across the border between each pair of cells is indicated by an arrow. The size of the arrows
indicate the magnitudes of the initial velocity components. The contour lines mark the different regions
in the game area as defined by the cost components.

Initial Blue strength distribution

1 —
T 7 = I~
3 B 2 - - By
: Ny
4 il 5{':' & [E <———
. A |
s, 5 -
;
T
6 | : } <
7 T) 7
7 k a— 7]
|
8 = =
1 2 3 4 5 6 7 8
Y
T T
1L i
1 1.5 2

Figure 12.6; Initial Strength Distribution for Blue force. Arrows indicate magnitude of the velocity
components across the boundaries.

Figures 12.8 and 12.9 show the final strength distributions for the blue and red forces. The arrows
indicate the magnitudes of the velocity components as the respective assets of the two forces reached
their final destinations. :

The final total strength for the blue force was 20.5, while the final total strength for the red force was

231

tnitial Red strength distribution

1 . A - =
I O O O
2 P - -
t 1 ! ; t ‘_T
3 < ry -
S
T L T
4 o] beagg = -
= <
5 < I~ >
A i J
6 - >
1 i i
7 J——— >
EEENEEEE
\Vi A/
1 2 3 4 5 6 7 8
Y
¥
i
2 3

Figure 12.7: Initial Strength Distribution for Red force. Arrows indicate magnitude of the velocity
components across the boundaries.

232

Final Blue strength distribution

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45

Figure 12.8: Final Strength Distribution for Blue force. Arrows indicate magnitude of the velocity
components across the boundaries.

233

Final Red strength distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 12.9: Final Strength Distribution for Red force. Arrows indicate magnitude of the velocity
components across the boundaries.

234

29.5. Therefore, the red force conserved only 15.4% of its original strength, while the blue force conserved
16% of its own strength.

12.6 Analysis

Qualitatively speaking, we can say that, in this scenario, the superiority of the blue force in the attack
range prevailed, allowing the blue force to keep the red force out of the most valuable cells in the middle
of the board. Indeed, the red force was forced to retreat into the four corners of the game area where less
valuable cells were to be found. It is also clear that different transportation costs assigned to different
regions affected the way in which the blue and red forces adjusted their strength concentrations during
the game. This can be seen in the fact that the red’s concentration in the (1,1) corner is weaker than the
other three corners because the terrain near (1,1) is harder to traverse.

12.7 Conclusions and Recommendations

It was difficult to find a scenario which was both interesting, in the sense that some significant amount
of action occurred during the game, and in which a game theoretic solution could be found by the SLQ
algorithm. In most cases in which a solution could be found, the velocity terms had to dominate the
payoff function so that little movement of assets resulted. This was particularly the case when the two
forces had an initial strength distribution concentrated in a small region of the game area. However, it
is still not clear at this time what features are most critical in determining whether a given scenario has
an SLQ solution or not.

With respect to computational complexity, the Game Flow solution engine executes relatively fast,
using a combination of Matlab built-in functions (e.g., ODE solvers) and custom made C++ routines.
For example, the CPU time required to run this experiment (8 x 8 grid) was 113.5 seconds. We also
solved the same scenario, but using a 10 x 10 grid. This represents an increase of 60% in the size of its
computational work. The algorithm converged and the results were similar to the ones reported here.
The CPU time in this case was 273.6 seconds, which means a 141% increase over the original experiment.
These results were obtained running the Game Flow program on a 800 MHz PC with 500 MB RAM. It
should be stated, that the actual CPU time required to run different scenarios may vary considerably
from these results.

In the current version of the Game Flow model, physical features of the theater itself can affect the
dynamics in two ways: i) in the rate of attrition of the human and/or mechanical assets in the field; ii) in
the energy cost associated with the movement of assets in the field. The last feature is not implemented
directly in the the differential equations of the system. Instead, it is represented in the payoff functions of
the two forces. A velocity reduction parameter, similar to an attrition parameter could be implemented
in future versions of the Game Flow model.

Another characteristic of the current version of the Game Flow model is that physical features of
the theater have no effect on the efficiency of attack. Hence, the enemy cannot hide behind a mountain
range, for instance. Also the efficiency of attack functions can have a directionality associated with them
before the beginning of a game, but these cannot be rotated or reoriented as the game evolves. This
could be an important addition to enhance the strategic capabilities of the Game Flow model. A similar
concept regarding shields, that would protect the assets positioned behind them, might conceivably be
incorporated as well.

It is hoped that by adding complexity to the model, the class of interesting problems that can be
solved with the Game Flow program would be enlarged.

235

236

Chapter 13

Experiment 13: Discrete Platform
Dynamics

13.1 Executive Summary

In any type of battlefield, the loss of platforms is usually a stochastic discrete event over time. In
JFACC simulations, however, the number of platforms has been modeled as a real number representing
its probabilistic expectation. In other words, our game-theoretic controller based on an expected-value
model needs to be tested on a more realistic plant, in which the numbers of platforms are integers. Our
approach was to first develop a model such that the dynamics of the number of platforms is a stochastic
discrete-event equation, i.e., in our new stochastic discrete-event model, the number of platforms in each
unit is an integer. Hence, the number of platforms changes from 10 to 9 at one point and then on to
eight platforms later based on the probability of kill. Moreover, the numbers of platforms vary differently
for different runs due to random number generators, which control the time when an actual kill occurs.
Using this new model, we conducted multiple runs and took an average. This average was then compared
against the results based on the expected-value model. We concluded that our game-theoretical controller
(based on the simpler expected-value model) performed just as well when tested on this more realistic
stochastic discrete-event plant model as when tested on the expected-value plant model.

237

13.2 Introduction

In the JFACC simulations, the number of platforms is modeled as a real number representing its proba-
bilistic expectation. Here we will investigate the effect of this assumption on the game-theoretic controller.
First, in Section 13.3, we form a hypothesis. Then, in Section 13.4 we describe a stochastic discrete-event
model, where the number of platforms in each unit is an integer and varies differently for different runs
due to random number generation. Because of the randomness, we needed to make multiple runs and
take an average in order to analyze the effectiveness of the game-theoretical controller. This experiment
and the methods are fully described in Section 13.5. The average of multiple runs is compared against
the expected value results and we form a conclusion in Section 13.6.

13.3 Hypothesis to Prove

The hypothesis is that we will not find any notable differences in the controller performance when the
controller based on the expected-value model is applied to the more realistic stochastic discrete-event
model.

13.4 Stochastic Discrete Model Description

Note: In the following derivation, we proceed with a generic unit without specifying Blue or Red since the
model is identical for both teams. However, in its programming implementation, the equation for the Red
and Blue forces are written separately.

As described in the report [1] on the Mission Dynamics Continuous-time Model (MDCM), the dy-
namics for the number 7 of platforms are given by

= —An, (13.1)
Here on the Mission Dynamics Continuous-time Model (MDCM) 5 = %3} and A is defined by

At) % oPpom, (13.2)

where p is the acquisition rate, Py is the probability of kill, ¢ is a function dependent on the distance
between the units, and = is the fire intensity.
To approximate the model, we use the forward difference approximation

A= 29200 1y

Then the approximate number of platforms lost over a At time interval is
n(t + At) — n(t) = A(#)n(t)At.

To take advantage of this approximation we must assume that At is small, furthermore we will want to
choose At such that
sup{A(t)n(t)At} < 1.
t

With this assumption, we view A(t)n(t)At as the probability of losing a platform in the interval [¢, ¢+ At].
Now define R as a uniformly distributed random number between zero and one. Then if R < A(f)n(t)At,
a platform is lost in the interval of At. We can now define the stochastic discrete event dynamics for the

number of platforms as
[) -1 if R< A(t)n(t)At
n(t + At) = { n(®) else (13.3)

where R changes with each update of the discrete system, that is we compute a new random number R
at each At update.

238

13.5 Experiment and Methods

To test the new model, we implement the discrete dynamics for the number of platforms into the plant
of the MDCM model while the internal model for the controller remains MDCM. We call the new model
with discrete dynamics: Mission Dynamics Continuous Model- Stochastic Discrete (MDCM-SD). The
scenario used is the cross!1 scenario, which is summarized in Table 13.1. The weights in the table are
for the quadratic cost function for the nonlinear game.

crossll

Blue | Red
Number of Units 1.0 1.0
Number of Platforms 10.0 10.0
P 0.8 0.8
0 0.5 0.5
£0)(0)(km) 80.0 | 50.0
€% (0)(km) 50.0 | 20.0

Weight: Distance to Target Cost { 0.1 0.1
Weight: Running Platform Cost | 0.01 3.0

Weight: Speed Cost 200.0 | 200.0
Weight: Terminal Platform Cost | 0.0 0.0
Weight: Terminal Target Cost 0.0 0.0
Weight: Terminal Speed Cost 0.0 0.0

Table 13.1: Cross 11 Scenario description

Next, to show that the plant dynamics are indeed discrete, and the controller acts effectively, we
conduct one sample run as illustrated in Figures 13.1-13.5. We can see in Figure 13.2 that the dynamics
of MDCM-SD are in fact discrete. Through one run, we see that the Red dynamics for the number of
platforms match closely with the MDCM model but the Blue dynamics for the number of platforms do
not, and for both Blue and Red, the discrete dynamics lag behind the continuous dynamics. This can be
explained by examining how we approximated the continuous model. Since the approximation requires
a forward difference approximation, we will have a delay “reaction” of the discrete dynamics. This is
because the current update of the discrete equation depends on the previous time (see Equation 13.3).
Yet, as we decrease At, the lag should become less noticeable.

To understand how well the controller performs on the MDCM-5D model, compared to the MDCM
model, we need to run the MDCM-SD simulation multiple times and taoke an average since the dis-
crete dynamics depend on the generation of random numbers. We have simulated and compared the
trajectories of MDCM-SD and MDCM over a hundred sample runs and over a range of update times,
At = 0.001,0.01 and 1.0 min. The comparisons are shown in Figures 13.6-13.20. Notice that, by taking
the average over a hundred sample runs, we are producing an approximate continuous dynamic equation
to the actual continuous dynamics.

In all the comparisons, and most importantly the dynamics for the number of platforms comparisons,
we do not see much dependence on the update times At we chose. This is good since smaller update times
will require more computation time, although the differences in computation time range on a magnitude
of a few minutes.

13.6 Conclusion
We have shown that the game controller performs as well on the more realistic stochastic descrete-event
battlefield plant as on the less realistic expected-value battlefield plant. Further experiments, using a less

trivial scenario, are currently under way at Washington University and preliminary results have shown

239

that the controller performance remains unaffected; though we were unable to include a complete analysis
at the time this report was written.

240

Bibliography

[1] Mission Dynamics Continuous-time Model: Version 3.0, Washington Univeristy JFACC Team In-
ternal Report, Department of Systems Science and Mathematics, Washington University, 2001.

[2] JFACC Ezperiment Report: Erperiment 13, PMDM Modle Validation, Ruisheng Li, Hong Gao and
Ilker Tunay, Washington University JFACC Team Internal Report, Department of Systems Science
and Mathematics, Washington University, 2001.

241

100

El

70

2}
£ 5ol

30+

2071

B1linterceptor,R1:bomber

Time:

1 X 20.0 min

Destination of B1

X

Destination of R1

L L L L : L L L 5

20 30 40 50 60 70 80 80 100
& (km)

Figure 13.1: Comparison of MDCM (- -) and MDCM-SD () for Game Trajectories (One sample run).

B1:blu, Rtred

10

time (min)

time (min})

Figure 13.2: Comparison of MDCM (- -) and MDCM-SD (-) for the Number of Platforms (One sample

run).

242

B1:bly, R1:red

02F

12 14 16 18 20

0.8}

04

o 1 L L z) 1 L '
0 2 4 6 8 10 12 14 16 18 20

Figure 13.3: Comparison of MDCM (- -) and MDCM-SD (-) for Fire Intensities (One sample run).

B1:blu, Ri:red
12

10—-—*——“\

0 2 4 6 8 10 12 14 16 18 20

Figure 13.4: Comparison of MDCM (- -) and MDCM-SD (-) for Weapons Expenditures (One sample
run).

243

B1:blu, R1ired

e

[T

20

Figure 13.5: Comparison of MDCM (- -) and MDCM-SD (-) for Speed (One sample run).

MDCM | MDCM-SD
nB(T) 7.47 9
T (T) 4.18 4
Game Cost | -4545.5 -4631.0

Table 13.2: Summary of Results for One Sample Run with A¢ = 0.1.

244

Figure 13.6: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Game Trajectories (At

0.001).

| cirdles

100
90+
80+
701
60 -
5(2) 50k
40+
30r
20

10

B1interceptor,R1:bomber

1 X

Destination of B1

X
Destination of R1

Time:
20.0 min

10 20

40 50 60 70 80 90
£ (km)

100

Table 13.3: Summary of Results Averaged over 100 Sample Runs for At = 0.001.

MDCM | MDCM-SD

nB(T) 7.47 7.87
T (T) 4.18 4.09
Game Cost | -4545.5 | -4507.1

245

B1:bly, R1red

0 i 1 1 1 i i i 1 1 3
0 2 4 6 8 10 12 14 16 18 20
time (min)

o] 2 4 6 8 10 12 14 16 18 20
time (min)

Figure 13.7: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for the Number of Platforms
(At = 0.001).

B1:blu, R1:red

12 14 16 18 20

11
08
R
To6h
0.4

0.2

0 1 i i i £ 1 1)

0 2 4 6 8 10 12 14 16 18 20

Figure 13.8: Comparison of MDCM (- -) and Averaged MDCM-SD (-} for Fire Intensities (At = 0.001).

246

B1i:blu, Rt.red

o i L Il L 1 1 : : 1 i

0 2 4 6 8 10 12 14 18 18 20

Figure 13.9: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Weapons Expenditures (At =
0.001).

B1:blu, R1:red

08
.6
04

0.2

08
e
04

0.2

0 2 4 6 8 10 12 14 16 18 20

Figure 13.10: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Speed (At = 0.001).

247

Figure 13.11:
0.01).

Table 13.4: Summary of Results Averaged over 100 Sample Runs for At = 0.01.

| cireiee]

1001
801
801
701
60

5(2) sol
401
30+
20+

101

B1iinterceptor,R1:bomber

1 X

Destination of B1

X

Destination of R1

Time:
20.0 min

10 20

30

40 50 60 70 80 90
£ (km)

100

Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Game Trajectories (At

MDCM | MDCM-SD
nB(T) 7.47 7.78
ni(T) 4.18 4.18
Game Cost | -4545.5 -4499.5

248

B1:blu, R1red

0 1. H . 1 1 1. 1 1 1 i
0 2 4 6 8 10 12 14 16 18 20
time (min)

0 2 4 6 8 10 12 14 16 18 20
time (min)

Figure 13.12: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for the Number of Platforms
(At = 0.01).

B1:blu, R1:red

0.8
8
T06f

041

12 14 16 18 20

0.8
R
o6k

0.4+

0 ! i i 1 1 L i J

0 2 4 6 8 10 12 14 16 18 20

Figure 13.13: Comparison of MDCM (- -) and Averaged MDCM-SD (-} for Fire Intensities (At = 0.01).

249

B1:blu, Rired

0 1 1 H I L i 1 1 t]

0 2 4 6 8 10 12 14 16 18 20

Figure 13.14: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Weapons Expenditures
(At = 0.01).

B1:biu, R1:red

08
n®e6
04

0.2

0.8
"6
04

02

20

Figure 13.15: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Speed (At = 0.01).

250

Figure 13.16: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Game Trajectories (At = 0.1).

Figure 13.17:
(At = 0.1).

100

80

80

70

60

2
E()50‘

40

30

20

B81intercepter R1:homber

3 X

Destination of B1

X

Destination of R1

Time:
20.0 min

10 20 30 40 50 60 70 80 90
£ (km)

100

12

10

B1:blu, R1:red
1 1 1 i 3 i 1)|
6 8 10 12 14 16 18 20
time {min)
1 1 i i 3 i 1 i
6 8 10 12 14 16 18 20
time (min)

Comparison of MDCM (- -) and Averaged MDCM-SD (-) for the Number of Platforms

251

Figure 13.18: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Fire Intensities (At = 0.1).

Figure 13.19: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Weapons Expenditures

(At =0.1).

0.8
B
T o6
0.4}

0.2+

B1.Llu, Rtired

081

R
To6k
04+

0.2

i

10

12

14

16

18

20

10

B1:blu, R1:red

L

Il

i

10

12

14

18

20

252

B1:blu, R1:red

0.8
.6
0.4

0.2

0.8
e
0.4

0.2

Figure 13.20: Comparison of MDCM (- -) and Averaged MDCM-SD (-) for Speed (At = 0.1).

MDCM | MDCM-SD
nB(T) 7.47 7.85
n®(T) 4.18 3.92

Game Cost | -4545.5 -4516.1

Table 13.5: Summary of Results Averaged over 100 Sample Runs for At = 0.1.

253

2

4

Chapter 14

Experiment 14: Non-linear Detector
for the Fully Non-Linear Model

14.1 Executive Summary

In Chapters 9 and 10 we have reported the results of experiments performed to test the effectiveness
of a “game-theoretic-optimal” detection filter to process noise-corrupted observations of the battlefield.
In those series of experiments, a bilinear approximation of the non-linear model of the battlefield was
considered and the filter was designed accordingly. When the fully non-linear model of the battlefield
is considered, a different (non-linear) detection filter must be designed. The purpose of this Chapter
is to present the experimental results concerning the non-linear filter and to compare them with those
obtained by using the detection filter designed on the basis of the bilinear model of the battlefield. For
the sake of simplicity, the case of noise-free measurements will be considered in this series of experiments.

14.2 Purpose of the Experiment

This section of the report describes experiments on detection and isolation of multiple enemy actions
in a battlefield. The mathematical description of the battlefield used here is the one introduced in the
Appendix 1.12 of Chapter 1 and there validated under the “uncoordinated target selection, independent
target acquisition” assumption. We consider the case in which two opposing forces are present in the
theater of operations, the Blue force (the “friends”) and the Red force (the “enemies”). Each force
consists of two units and each unit consists of a number of platforms whose evolution in time is described
by a first order nonlinear differential equation and depends on the “actions” which the opposing units
are performing against the unit in question. If any “new” action is performed by any of the opposing
units, this affects the evolution of the number of platforms of the other force’s units. Each unit’s location
is represented by a point on the plane and its motion is described by an ordinary differential equation
depending on speed control inputs. Denoted with £7 = col(¢f,£f) € R? and ¢F = col(¢Z,£2) € R?,
with 7 = 1,2, the position vectors of the Red and - respectively — Blue units on the plane, the equations
of the motion in question are !

d

Féa® = aful®)

d R

—=&it) = afufi(t)

de™ v (14.1)
T a(t) = aPuB@)

d

!The reader is referred to Chapter 1 for a definition of the parameters appearing in the equations (14.1) and (14.2).

255

where pf = col(uft, uft) € R? and pf = Lol(um uE) € R? are the speed control inputs of the Red and
Blue units, respectively. Letting n® and n?, with i = 1,2, denote the number of platforms of the i-th
Red and - respectively - i-th Blue unit, the model of evolution of the number of platforms is a four-

dimensional nonlinear system described by two pairs of equations of the form (cf. Chapter 1, formula
(1.26))

Suf)) = -nRoe” +Zm (OBPEVE(ER(E) - 2 (OB ()
) (14.2)
Sal) = PO +Zn] PR (1) - EFONTE)

In these equations, wff -) and 7j; B(.) are (mdependent) input variables representing the “level of en-

gagement” of the j-th Red unit with the i-th Blue unit and - respectively — of the j-th Blue unit with
the ¢-th Red unit. For convenience, we suppose in all our experiments that

i (1) = mi5(8) = wft (), w(b) = mah(t) = m(e) .

This means, in the terminology of [1], page 2, that we allow the “unique target constraint” to be violated
(for the Red units only). In spite of what has been assumed for the experiments which have been reported
in Chapters 9 and 10, in this series of experiments it will be considered the case in which the effect of
the action performed by a unit on the number of platforms of an opposing unit depends on a measure
of the distance between the two units through the function %. Following Chapter 1, we take as ¢ an
exponential function which depends on the measure r of the distance between the two units, namely

P(r) = exp~ /™ |

with rg a suitable scalar parameter. If §;,£; are the vectors denoting the position of two units, their
distance r is chosen equal to the quantity | — &;leo = max(|&iz — &z, [&iy — &jy!), which is the co-norm
of the vector & — ;. For simplicity, we drop henceforth the subscript co to denote such norm.

The basic problem addressed in our series of experiments on the design of filters for the detection of
enemy actions is the following one: we monitor only the position, the number of platfonns and speed control
inputs of the two Blue units (i.e. we measure only the values of the four state variables ¢2, ¢2 0B, n8 and
of the inputs pZ,, pyl) and we want to detect the occurrence of an “engagement action” from either one
of the two Red units (i.e. we want to detect when either one of the two input 51gnals 71't () has become
nonzero). Implicit in this is the assumption that the four other state variables ¢R el ,171 ’772 (number
of platforms of the two enemy units) as well as all the input variables 7r”, i,j = 1,2, pkt, uyl and 7}t
i=1, 2, are not monitored. The purpose of the detection process is precisely the determination of when
either 7 or 7& has become nonzero, without having it directly measured.

14.3 Hypothesis to Prove or Disprove

Let us consider the systems (14.1) and (14.2), where, for the sake of notational simplicity, the latter is
rewritten as

SaR(t) = —aPnft(e) ~ B (IER(D) — EPWDTA) — B OBIERE) - DR
th<> = —aPnfi(t) ~ P OBIERD - EP DO — nd O EF) - 6 D)
SnP©) = —auP0) — ARl () - EFODTE® - vBaf e IEP () - FODTE()
SaB) = —aRnP () - i Ov(ER () - RO — B (R O - WD),
(14.3)

with 7153, B *j» 1,7 = 1,2, suitable parameters. As in the equations above the two actions to detect 7f* and
7f appear multiplied by terms which depend on the un-measured functions nft, nf, e/ and €5, the main

256

challenge in this problem is to distinguish not only the two actions 7, 7£ from each other, but also from

the “disturbance” action of nit, nf*, £ and ¢£t. In particular, according to the model in (14.3), the effect
of an “engagement action” by a unit on the evolution of the number of platforms of an opposing unit will
depend on their positions. Since the number of platforms of the Blue units is processed by the filter, its
capability to detect and isolate actions will be related to the location of the units. We fix geographical
areas for the Red and the Blue units in the theater of operation, and assume that the units are moving in
those zones. In this assumption, we design a detection ﬁlter following the methods of [2] 3]. This filter
receives as inputs the four observed variables {1 ,{2 ,771 ,772 and the measured inputs um, uy,, = 1,2,
and generates as outputs two signals r1, rp, called performance signals (typically known also with the
name of residuals), in such a way that r;(¢) is zero if the Red unit i is not engaged with the Blue units at
time ¢ (i.e. if #f(¢) = 0), and that r;(t) is nonzero if the Red unit ¢ is engaged with the Blue units (i.e.
if w7 (t) # 0), no matter what the locations of the four units in the assigned areas are. Specifically, this
filter is modeled by equations of the form

H _ __Ra 712 LAUSHOIAW B _11_2_1/)(151) nB(t) -
mt) = —etm) - Jpg <w(|e) EO et 2B w(lep)™ O
2 = —oPp 721 (&' @®)1) B ’721 PEZ M) s
) = a0~ T 5 (i) 0+ rf 0 - ZE S0 - e
(14.4)
- — B W YLD o -
1(2) ny (t) — 722¢(i§2(t)|)n2() mn(t),
n) = of() - B m

2E p(eF@n™ "

These equations contain terms which depend on the positions of the Blue units and on their rate of
change, which are quantities available for measurements. In order to compare these equations with those
which describe the linear filter (9.3) (or 10.3) in Chapters 9 (or 10), one can observe that the second
term on the right-hand side of the first two equations in (14.4) is taken identically zero in the linear filter,
while the ratio ¥(|¢2|) /v (1€8]) (or w(|€£])/¥(|€8])) is taken equal to 1. The parameters gi, g are “gain
parameters” to be designed. In the problem considered in Chapter 9 (or 10) the design of g; and go
was critical in order to obtain a filter which was able to selectively reduce the effect of the measurement
noise while not attenuating the signal associated with the action to detect. Since we consider the case of
noise-free measurements for this series of experiments, it is enough to design g; and g2 so as to guarantee
the stability of the filter.

14.4 Experiment Setup

The equations which define filter (14.4) depend on the location of the Blue Units. To test the effectiveness
of the detection filter we fix geographical areas in the theater of operations in which the motion of the
Blue and Red Units can evolve (see Figure 14.1). We consider the case in which the two Red Units are
allowed to move in the red-dashed area in Figure 14.1, whereas the two Blue Units can evolve in the
blue-dashed area. We note explicitly that, although the region where the Red units are allowed to move
is known, we do not know the positions £¢% and &£ of the two Red units. The four units will evolve along
trajectories confined in the areas introduced before and according to the law {14.1). An example of such
trajectories is depicted in Figure 14.2. The evolution of the number of platforms is modeled as in equation
(14.2). The inputs variables, representing the level of engagement of the battling units, are functions of
time which vary with different scenarios. For instance, in the first experiment we consider, the two levels
of engagement of the Red units 1 and 2 versus the Blue units vary with time as shown in Figure 14.3,
where “Action 1” represents the level of engagement of Red unit 1 and “Action 2” represents the level of
engagement of Red unit 2. Note that the first action occurs at ¢ = 40 units of time, whereas the second
action takes place at t = 25 units of time and that the first action takes place while the first action is still

257

Figure 14.1: Geographical areas in which Red and Blue units can evolve.

10 T T Y T i T T T T

+ = Blue Unit 1
8l - Blue Unit 2
= Red Unit 1
- Red Unit 2

-8 =

-10 I 1 L L L L I 1]
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 14.2: Trajectories for the Red and Blue units in Experiments 1 and 2.

258

0.5 T T T T T T T T M
04} . 1
0.3F ‘ .
0.2f .
0.1} .
0 L i i] 1 L i 1
0 5 10 15 20 25 30 35 40 45 50
0v1 H T T T 4 T ¥ T T
oos} \\\ |
0.06} T~ A
0.04 b
0.02 .
0 I3 i il i i 1 i A
0 5 10 15 20 25 30 35 40 45 50

Figure 14.3: Engagement actions of the Red units versus the Blue units in Experiment 1.

occurring. The corresponding evolution in time of the number of Red and Blue platforms for each unit
is plotted in Figure 14.4. We remind that the number of platforms of the Blue units is measured and fed
into the detection filter, along with the measurement of their positions and speed control inputs. The
filter generates the two outputs r1, s according to the equations (14.4) which must reveal the occurrence
of Action 1 and, respectively, Action 2.

14.5 Example of Experiment

For the first experiment (henceforth, referred as “Experiment 1), we consider the scenario in which the
four units present in the battlefield are moving following the trajectories in Figure 14.2. The two Blue
units are subject to the engagement actions depicted in Figure 14.3 due to the Red units. The measured
number of platforms of the Blue units - which are processed by the detection filter - evolves according
to the time behaviour in the plot on the left side of Figure 14.4. Although a change in the profile of the
two graphs can be noticed at time ¢ = 25 units of time and ¢ = 40 units of time - denoting an increased
level of engagement due to the action of the Red units - it cannot be inferred from these graphs which
one of the two units is actually increasing its level of engagement versus the opposing units. As a matter
of fact, only the outputs of the detection filter can clearly reveal the occurrence of the two Red actions,
by distinguishing both of them. Figure 14.5 shows the time profile of the action to detect (Action 1) and
of the Performance Signal 1 generated by the detector (r1). It is seen that the performance signal decays
to zero after a transient behavior, does not “react” to the occurrence of Action 2, and becomes evidently
nonzero only when Action 1 occurs. In this way, it is possible to infer the occurrence of Action 1 without
confusing it with the occurrence of Action 2. Analogously, Figure 14.6 shows how the Performance
Signal 2 allows to detect the occurrence of Action 2. For the sake of completeness, the evolution of
the internal states of the detection filter is reported in Figure 14.7. In order to assess the behaviour of
the non-linear filter, the time profiles of the two performance signals generated by the linear detection
filter are illustrated in the next two figures. Namely, the responses of the Performance Signal 1 and 2

259

50 T T T T 50 T T T T
451 1 451 1
40 E 40 \\ g
35¢ 1 35; \\ -
\\\
~
30+ 4 30} L)
25t 4 25}
20+ E 20F 4
15+ B 15} 4
10p 1 10}]
-~ Blue Unit 1 — Red Unit1
L - Blue Unit 2] L Red Unit 2 1
5] 5
0 . ; . . 0 : . . ;
0 10 20 30 40 50 0 10 20 30 40 50

Figure 14.4: Evolution in time of the number of platforms in the Blue and Red Units in Experiment 1.

0.5 i T T T T T T T T

031 1

0.2+ kR

1.5 T T T T T T T T T

[~ Performance Signal 1]
0.5 B

-15 1 L 1 1 1 1 1 1 i
0 5 10 15 20 25 30 35 40 45 50

Figure 14.5: Action 1 and Performance Signal 1 in the Experiment 1.

260

0.1

T T T i T 1 T T T
0.08f

008]
0.04 - B
0.02+ b
0 -

| 3 1 1 1 L 1 I 1

0 5 10 15 20 25 30 35 40 45 50

1 T T T T T T T T T

0.5 [[— Performance Signal 2] 1

i i i 1 §

1 i 1 1

5 10 15 20 25

30 35 40 45 50

Figure 14.7: Internal state of the detection filter in Experiment 1.

261

T H T T T T T T ¥
oaf —]
|
02¢ 4
0 - N
i i 1 i i 1 i 1 1
0 5 10 15 20 25 30 35 40 45 50
0.1 T T T T 7 T T l T
0051 ! ——
0 ‘]
il 1) 13 1 i A 1 i
0 5 10 15 20 25 30 35 40 45 50
1 .5 T T T ¥ T T T T T
. [~ Performance Signal 1 - Linear Filter]
0.5F B
Or]
0.5) L L 1 I 1 ¢ L)
[5 10 15 20 25 30 35 40 45 50

Figure 14.8: Actions 1 and 2 and Performance Signal 1 for the Linear Detection Filter in Experiment 1.

of the linear filter are given in Figure 14.8 and 14.9, respectively. Figure 14.8 evidently shows how the
“noninteractive” property of the filter is lost. In fact, the Performance Signal 1 - which virtually should
be zero until Action 1 occurs, becomes nonzero in response to the occurrence of Action 2 at time ¢t = 25.
This is due to the nonlinear terms present in the model (14.2) which are not taken into account by the
linear detection filter.

14.6 Results of the Experiments

We report in this section the outcome of experiments performed varying the engagement actions of the
two Red Units and the trajectories followed on the plane by the Red and Blue Units. The non-linear
model of the battlefield depends on such functions, and so the evolution in time of the number of platforms
of the Blue units, which feed the non-linear detection filter. It will be seen that, despite of the changes
in the signals which drive the filter, its capabilities of detecting and isolating the two Red unit actions
are unaltered.

Consider the following scenario for the second experiment. As in the experiment in the previous Section,
the four units present in the battlefield are following the trajectories in Figure 14.2. The actions of the
Red Units versus the Blue Units have different occurrence times with respect to the actions considered
in the Experiment 1. Action 1 occurs at time t = 25 whereas Action 2 occurs at time ¢ = 40 (see Figure
14.10). How these different actions change the shape of the time behaviour of the number of platforms
of the Blue units is shown in Figure 14.11. The response of the detection filter to the two actions are
depicted in Figures 14.12, 14.13. In Figures 14.14, 14.15 are reported the response of the performance
signals of the linear filter. As in Experiment 1, even in this case the “non-interaction” property of the
filter is lost due to the nonlinear terms. In particular, the Performance Signal 2 erroneously detects
Action 2.

The next experiment is aimed to validate the hypothesis that the detector’s performance is not affected
by a change in the trajectories of the units in the battlefield. Consider the case in which the four units’

262

T T T T T ¥ T T ¥
0.4r S 1
0.2+ 1
o .
| 1 1 i i 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
0.1 T T T T T Y T T T
{‘ —
0.05- g
0 ’ .
1, 1 i I 1 i 1 L i
o 5 10 15 20 25 30 35 40 45 50
1 T
0.5+
0 -
~0.5F E
__1 1 i i 1 1 i i) i i
0 5 10 15 20 25 30 35 40 45 50

Figure 14.9: Actions 1 and 2 and Performance Signal 2 for the Linear Detection Filter in Experiment 1.

0.8 T T T T T T T T T
0.6 —
\\‘\\\
\
0.4 \\\\\\“.,‘ -
0.2 4
0 -
] i i 1 i i 1 i 1
0 5 10 15 20 25 30 35 40 45 50
0.08 T T T T ¥ T T T T
0.08}- P
0.041F B
0.02 b
0 4
L 1 I 1) 1 | ! !
0 5 10 15 20 25 30 35 40 45 50

Figure 14.10: Actions 1 and 2 of the Red Units in Experiment 2.

263

151+ -
1wk Biue Unit 1 - Experiment 1 A
Blue Unit 2 - Experiment 1
— Blue Unit 1
5k Blue Unit 2 |
0 1 1 i] ! A 1 1
4 5 10 15 20 25 30 35 40 45

Figure 14.11: Evolution in time of the umber of platforms of the Blue Units in Experiment 1 and
Experiment 2.

08 Y T T T T T T T
0.6} B
R —_—
\\
0.4r [——]
0.2+ B
0 —
1 i i i 1 1 i 1
0 5 10 15 20 25 30 35 40 45
2 T T T T T T T T
[— Performance Signal 1 |
1 -
0 -
_1 -
-2 i Il £ L 1 L Il 1
0 5 10 15 20 25 30 35 40 45

Figure 14.12: Action and Performance Signal 1 in Experiment 2.

264

0.08

T ¥ L H T T ¥ T
| — Action 2
0.06 [
0.04} ’ _
0.02F : .
0 ! .
1 1 i H 1 i 1. Iy
0 5 10 15 20 25 30 35 40 45
045 H H T T T T T T
04 [— Performance Signal 2 | .
0.3} .
0.2+ .
0.1F .
ot 4
_0'1 - —
~0.2F]
1. I 1 1 i ! 1 1
0 5 10 15 20 25 30 35 40 45
Figure 14.13: Action and Performance Signal 2 in Experiment 2.
1 T T T T T T T T
05F T — .
-\"\\
—
0 i] il i] | 1 1]
0 5 10 15 20 25 30 35 40 45
0.1 ¥ T T T T ¥ T T
— |
0.05 B
0 } J
I 1 1 i I3 i 1 i
0 5 10 15 20 25 30 35 40 45
2 T ¥ ¥ T T T T T
1k 4
of R
4k [— Performance Signal 1 - Linear Filter | J
) i | t 4 § i i i
0 5 10 15 20 25 30 35 40 45

Figure 14.14: Actions 1 and 2 and Performance Signal 1 of the linear filter in Experiment 2.

265

é
1
s
1
|
i

1 H T T T T T H T
05l i B
B
- I .
0 i 1 1 1 ! 1 1 1
0 5 10 186 20 25 30 35 40 45
0.1 T H T T T T T T
R —
0.05 |]
|
0 I3 I i] 1 3 | 1]
0 5 10 15 20 25 30 35 40 45
1 T T T T H T T ¥
0 5 I \]
ok /
-05F- { "~ Performance Signal 2 -Linear Filter | 1
-1 L ! L L L 1 1 1
0 5 10 15 20 25 30 35 40 45

Figure 14.15: Actions 1 and 2 and Performance Signal 2 of the linear filter in Experiment 2.

motion are as those depicted in Figure 14.16. The evolution of the number of platforms of Blue Units can
be compared with the same quantities obtained in Experiment 1 in Figure 14.17. The two performance
signals generated by the non-linear detection filter are given in Figures 14.18 and 14.19. Figures 14.20
and 14.21 show the performance signals of the linear detection filter.

14.7 Conclusions and Recommendations

The detection and isolation of actions of the “enemy” units versus the “friendly” units in a non-linear
model of the battlefield requires the use of a non-linear detection and isolation filter. Since the non-
linearities amount to terms which depend on the position of the battling units in the field of operations,
the non-linear filter utilizes as inputs the position and the speed control inputs of the friendly units in
addition to the number of platforms which is used as input by the linear detection filter. It turns out
that the non-linear detection filter detects and isolate concurrent actions by the opposing units whereas
the linear filter does not, confounding the two actions to detect. Although not considered in this series
of experiments, the case of noisy observations of the number of platforms can be faced similarly to what
has been done in Chapters 9 or 10, with an optimal choice of the gain parameters which define the
detection filter. This boils down to the solution of a Riccati equation and to a detection filter with more
computational complexity.

266

10 T Y T T T T T T T
= = Blue Unit 1 /
== Blue Unit 2

=~ = Red Unit 1
- Red Unit 2

-8+ -

-10 1 1 1 1 1 1 1 ! 1
~10 -8 -6 -4 -2 0 2 4 [8 10

Figure 14.16: Trajectories of the Red and Blue Units in Experiment 3.

50 T T T T T T T T
a5} .
40 . -
35+ e .
30F S
25[- IR -
20+ .
15+ -
— Number of Platforms Blue Unit 1 ~ Experiment 1
10k Number of Platforms Blue Unit 2 - Experiment 1 |
—— Number of Platforms Blue Unit 1
Number of Platforms Blue Unit 2
5¢ A
O I 1 1 i i ! 1 i
(4] 5 10 15 20 25 30 35 40 45

Figure 14.17: Evolution in time for the number of platforms of the Blue Units in Experiment 1 and
Experiment 3.

267

0.8 T T T T T T T T
— Action 1.
0.6} B
04f]
0.2r .
0 -4
| i I3 i 1 i L 1
0 5 10 15 20 25 30 35 40 45
1.5 T T T T T T T T
4L [Performance Signal 1] |
05 k!
or B
-05 - -
_1 - el
_15 i i 1 1 L 1 L. I}
0 5 10 15 20 25 30 35 40 45

Figure 14.18: Action 1 and Performance Signal 1 in Experiment 3.

0.1 T T T T T T Y T

0.06}- A
0.04F - ﬁ

0.021 h

5 10 15 20 25 30 35 40 45

Figure 14.19: Action 2 and Performance Signal 2 in Experiment 3.

268

1 T T T T T T H T
-—-_Action 1
0.5+ T
0 A 1 i 1 i 1 i 1]
0 5 10 15 20 25 30 35 40 45
0»1 T T T T T T T T
[Action 2]
0.05 T
0 i Il 1 i i i 1) 7 ;
0 5 10 15 20 25 30 35 40 45
1-5 T T T T 1 T T ¥
L [— Performance Signal 1 - Linear Filter] j
0.5+ B ;
oF 4
_0.5 1 1 i i} | i 1 i
0 5 10 15 20 25 30 35 40 45

Figure 14.20: Actions 1 and 2 and Performance Signal 1 of the linear filter in Experiment 3.

1 T T T T T T L T
0.5+ b
0 -
1 1 i 1 i i 1 1
o 5 10 15 20 25 30 35 40 45
0.1 T T T T T T T T
0.05}]
e
, B |
L 1 i i 1 1, i il
0 5 10 15 20 25 30 35 40 45
1 ¥ H ¥ ¥ T T T T
[[— Performance Signal 2 |
051 b
0 - -3
-0.5F -
-1 L 1 i] 1 i 1 1
0 5 10 15 20 25 30 35 40 45

Figure 14.21: Actions 1 and 2 and Performance Signal 2 of the linear filter in Experiment 3.

269

270

Bibliography

[1] H. Mukai et al., Mission Dynamics Continuous-Time Model, Version 2.42, Internal Report, Depart-
ment of Systems Science and Mathematics, Washington University, 2000.

[2) C. De Persis, A. Isidori, “On the observability codistribution of a nonlinear system,” Systems &
Control Letters, 40, 297-304, 2000.

[3] C. De Persis, A. Isidori, A geometric approach to nonlinear fault detection and isolation, to appear
as a regular paper on IEEE Transactions on Automatic Control, Sept. 2001.

271

272

Chapter 15

Experiment 15: Comparison with
Honeywell’s Results

15.1 Executive Summary

A comparison of the platform loss and probability of success values is made between Washington Uni-
versity and Honeywell results on two example missions, each consisting of three sorties. The results are
similar in the first example. Due to a change in the initial number of Red fighters and their probability
of kill, the outcome of the second example is drastically different. It has also been observed that the
selection of weights in the cost function may affect the unit trajectories and platform loss significantly.

Despite running our Sequential Linear-Quadratic Method for 50 iterations or more, convergence to a
possible Nash solution was not achieved in either example, although the obtained unit trajectories and
platform loss numbers were reasonable, given the mission objectives.

15.2 Introduction

The purpose of this experiment is to compare the results obtained by the Honeywell Team with those of
the Washington University Team, using a common scenario and task description.

The Honeywell approach is based on a discrete-transition Markov chain model of combat between
teams of Red and Blue units, and describes platform attrition during a sequence of sorties to accomplish
a given mission [1]. In this model, target selection coordination and cooperation between friendly units are
explicitly taken into account, but terrain features, initial unit locations and the routes followed by units
during a sortie are assumed to be lumped into a single parameter, called the “lethality” of a particular
type of unit against a particular type of enemy unit. This parameter determines state transitions of the
number of platforms during the mission.

Honeywell’s Model Predictive Controller [2] is based on a component called the “Initial Deployment
Optimizer.” Given the lethality matrix, the number of platforms and decoys in each Red unit, the
maximum number of rounds (sorties) in the mission and the desired probability of win, this component
calculates the minimum number of Blue platforms to deploy in the first sortie, assuming that all survivors
of a sortie will be reassigned to the next one, and no reserves will be called in to join either Red or Blue
teams.

The Washington University model starts from similar arguments of target acquisition and target
selection coordination, derives a continuous-transition Markov chain for platform attrition, and then
approximates the evolution of the expected values of the number of platforms in both Red and Blue
teams by a low-order ordinary differential equation. This is combined with unit motion on a two-
dimensional battle space and weapon expenditure. In this way, the location and motion of units, the
effect of distance on weapon effectiveness and cooperation of friendly units are taken into account. The
state transition of the number of platforms is determined by two parameters: the target acquisition rate

273

and the probability of kill for a particular type of platform against a particular type of enemy platform
per firing. As opposed to the aggregate concept of “lethality”, these low-level parameters are determined
mainly by the properties of the search devices and the weapon systems, given weather conditions, and
thus are independent of the engagement rules, the strength of the teams or the synergy between friendly
units.

One component of the Washington University effort is the calculation of the game theoretic optimal
control (for both Red and Blue teams) using the Sequential Linear-Quadratic Method (SLQM), given
the initial state (number of platforms and weapons in the units, and unit locations), and a cost function
which encompasses the trade-off between accomplishing the mission (e.g., reducing the number of enemy
platforms), the value of friendly assets, fuel and weapon consumption. The Nash solution (of the zero-sum
differential game) computed by this component will depend on how the weights are chosen in the cost
function.

It is possible to combine Honeywell’s “Initial Deployment Optimizer” and Washington University’s
“Game Theoretic Tactical Solution” components, in an iterative loop for improving lethality estimates.
This idea is described in the flowchart in Fig. 15.1.

Before this idea is implemented, it is useful to compare the results of the Honeywell and Washington
U. models and controllers. The rest of this report consists of this comparison based on two example
scenarios proposed by Honeywell.

15.3 Experiment Setup

The scenarios used for the comparison are best described by the following quotation from [3):

“Blue is tasked with the objective to destroy a ground target in three missions (sorties) or
less. On its way to the target, his strike package will encounter Red’s fighters (...). To lower
the loss of his bombers, Blue will provide a few escort fighters to his package. After each
mission, the survivors on both sides return to their bases, where they are fully rearmed and
then send off again on the next mission. Successful task completion is defined so that both
the target must be destroyed within the given deadline and own losses must not exceed a
given cap. In particular, destroying the target with own loss exceeding the cap is considered
a failure. The task is over whenever the ground target was destroyed (even if it happens in
the first or second mission) or three mission have been flown in vain.

Each Blue bomber carries a payload, whose lethality against the Red’s ground target is the
first number in the lethality matrix element (1,2). (...) For self-defense, it has cannons whose
lethality against the Red fighters is the first number in the lethality matrix element (1,1).

Each Blue fighter is armed with 4 AA missiles, whose lethalities against the Red assets are
given by the first numbers of the second row elements of the lethality matrix. Note that the
fighters has no weapons against the ground target.

Each Red fighter is equipped with 4 AA missiles, whose lethalities against Blue bombers and
fighters are the second numbers of the first column elements of the lethality matrix.

The Red ground target is passive and cannot shoot back at the Blue package.

Both the Blue and Red fighters fire one missile at a time without target selection coordination
with their fellow fighters. (...) Likewise do the bombers. Furthermore, the Blue fighters do
not coordinate their target selection with the bombers (The inter-asset coordination.).”

In our experiments, we assume that the Red fighters (R2) are targeting Blue bombers (B1) only.
Blue bombers (B1) are dropping bombs on the Red ground target (R1) and Blue fighters (B2) are firing
at the Red fighters (R2). This is different than the Honeywell model in which the Blue bombers can also
fire at the Red fighters, with low lethality.

The target acquisition rate is set to one for all units, and the lethality numbers in [3] are used as the
probability of kill values at optimum distance, as shown in Table 15.1. Note that the probability of kill

274

(sl oy o H

—
SHPWH5Y _
Amrp]
arepdy _
J
ruobueman
UGHTIOS [EIE]

HPIOM]] AUED)

&mﬁveﬁﬁ

[P ;m

.

eaem s |/

} ?ﬁ:ﬁm
I |

I ELE
VOIESHA

Figure 15.1: Flowchart for interaction of software components

275

Table 15.1. Probability of Kill Values

Blon Rl | B2onR2 | R2on Bl
Example 1 0.2 0.3 0.4
Example 2 0.2 0.6 0.6
B1:BMB,B2FGH,R1:GT,R2INT

100

90}

80}

701 R2 x

60}
2) Time:
& s0p 0.0 min

40}

30}

20

10+ 82 B1

% 10 20 30 40 s 60 70 8 90 100

& (km)

Figure 15.2: Initial positions of the units.

decreases with distance in our model. These are the only parameters that are varied between the two
examples.

The initial number of platforms in each unit are those generated by Honeywell’s commponent, as given
in [3], except that the Red ground unit is assumed to have 10 platforms initially, instead of a single target.
In this way, the expected number of platforms in the Red ground unit at the end of each sortie (loosely)
correspond to ten times the probability of failure (one minus prob. success). The initial positions of the
units are chosen as shown in Fig. 15.2.

The trajectories and the firing intensities of the units in the Nash solution (in fact, the existence of a
Nash solution) are determined by the weights in the cost function. For our experiments, the weights in
Table 15.2 are used.

Note that it is possible to obtain very different trajectories and final results by changing the above
weights.

15.4 Experiment Results and Analysis

The Sequential Linear-Quadratic Method (SLQM) for the Nash solution computation is terminated in 50
iterations for all sorties. For Example 1, the behavior of the control update (du) and the cost function,

276

Table 15.2: Weights in the Cost Function

B1 B2 | R1| R2
distance from destination | 1E-3 0 0 0
running cost for platforms 1 1E-4 | 1 | 1E4
final cost for platforms | 10 | 1E-3 | 10 | 1E-3
distance from target enemy unit 0 5E-3| 0 | 1E-3
cost on velocity (fuel) | 25 25 | 251 25
cost on firing (weapons) { 25 25 | 25| 25

as the iterations progress, are shown in Figs. 15.3 and 15.4 respectively.

It is seen that convergence to a small value of du is not achieved in 50 iterations. Increasing the
number of iterations up to 200, or changing the step size parameter of the algorithm did not improve the
convergence. For this reason, it is likely that the results we present below may not correspond to the Nash
solution for this problem, although they appear to be reasonable given the mission objectives. In fact,
it is not known whether a Nash solution exists for this scenario and the associated cost function. There
are many different, equally acceptable, choice of weights corresponding to the same mission statement.
However, we do not know a systematic method of determining those weights, and a trial-and-error
approach proved to be very time consuming and fruitless for both Examples 1 and 2.

The trajectories obtained by the SLQM algorithm for each sortie of Example 1 are depicted in
Figs. 15.5, 15.6 and 15.7.

For Example 2, the behavior of the control update (du) and the cost function, as the iterations
progress, are shown in Figs. 15.8 and 15.9 respectively. It is seen that convergence to a small value of du
is not achieved in 50 iterations. Similar to Example 1, increasing the number of iterations up to 200, or
changing the step size parameter of the algorithm did not improve the convergence. For this reason, it
is likely that the results we present may not correspond to the Nash solution for this problem, although
they appear to be reasonable given the mission objectives.

The trajectories obtained by the SLQM algorithm for each sortie of Example 2 are depicted in
Figs. 15.10, 15.11 and 15.12.

The expected platform loss and probability of success results of the two examples are summarized in
Tables 15.3 and 15.4. The Honeywell results, taken from [3], are based on the “Bombers First” strategy
for the Red fighters and “max loss = 3” assumption. For Washington U. tests, the same strategy for the
Red fighters is enforced by assigning the Blue bombers as the sole target of this unit. The probability of
success (the probability of destroying the Red ground target) is calculated from the expected number of
remaining platforms in the Red ground unit R1.

In Example 1, the Honeywell and Washington U. results are comparable. Since the modeling assump-
tions are similar, the sources of discrepancy are the effect of location of the units in the theater, and
the selection of weights in the cost function, which express the relative importance of achieving target
destruction versus platform loss, fuel and weapon consumption.

In Example 2, the initial number of Red fighters is increased to 5 and their probability of kill against
the Blue bombers is increased to 0.6 from 0.4. Even though the cost function is kept the same as in
Example 1, the Blue bomber unit B1 is more concerned about its own safety and rather reluctant to get
closer to its destination, as seen in Figs. 15.10-15.12. Therefore, the probability of success is much lower.
The Honeywell results for Example 2 are not available at this time.

277

[iBulf

0.8

0.6

i 1 i 1 L i i 1
5 10 15 20 25 30 35 40 45 50
iteration number

Figure 15.3: Root-mean-square (rms) value of the control update du vs. iterations for Example 1.

1450

1400

1350

1300

1250

cost vaiue

1200

1150

1100

1050

1000 b= i ! 1 L i i 1 L] i
5 10 15 20 25 30 35 40 45 50
iteration number

Figure 15.4: Value of the cost function vs. iterations for Example 1.

278

B1:BMB,B2:FGH,R1:GT,R2INT

1001
90

8ot

601

Time:

G
> 50 15.0 min

40t
301
20}

101

0 . " L . . L . n N)
0 10 20 30 40 50 60 70 80 90 100

£ (km)

Figure 15.5: Trajectories of units, Example 1, Sortie 1.

B1:BMB,B2:FGH,R1:GT R2:INT
100

90}

701

Time:

@ |
80 15.0 min

40r

20

0 . L . L L L s . . ,
o 10 20 30 40 50 60 70 80 80 100

£ (km)

Figure 15.6: Trajectories of units, Example 1, Sortie 2.

279

B1.8MB,B2:FGH,R1.GT R2INT

100

80+

601

Time:

E(z) -
50 15.0 min

301

0 L L N L s : . . . s
0 10 20 30 40 50 60 70 80 90 100

&™ (km)

Figure 15.7: Trajectories of units, Example 1, Sortie 3.

13b
12k :

JfBuil
11F _

0.9} b

1 I, 1 | J 1 1 1 1
5 10 15 20 25 30 35 40 45 50
iteration number

Figure 15.8: Root-mean-square (rms) value of the control update du vs. iterations for Example 2.

280

T T T T T T T ¥ T T

1600 b
1500 b

1400} .

cost value

1300 1

1200 R

:

1100 b

1 1 i, 1 1 1 I\ 1 L i

5 10 15 20 25 30 35 40 45 50
iteration number

Figure 15.9: Value of the cost function vs. iterations for Example 2.

B1:BMB,B2:FGH,R1:GT R2:INT

90r

r/ B
701 L
60

Time:
15.0 min

2)
5”50—

401

20

o . L L : . L) L s .
0 10 20 30 40 50 60 70 80 90 100

& km)

Figure 15.10: Trajectories of units, Example 2, Sortie 1.

281

B1:BMB,B2:FGH,R1:GT R2Z:INT

80+

70+

Time:
15.0 min

2

9 50l
40}
3o}

20f

0 X ' s s L s " It 2

] 10 20 30 40 50 60 70 80 90 100
&M (k)

Figure 15.11: Trajectories of units, Example 2, Sortie 2.

B1:8MB,B2:FGH,R1:GT,R2:INT
1001

80+

60

Time:
15.0 min

2
i”SO—
40+

301

10

0 L L L . L n
0 10 20 30 40 50 60 70 80 S0 100

& (km)

Figure 15.12: Trajectories of units, Example 2, Sortie 3.

282

Table 15.3: Example 1: Probability of Success and Remaining Number of Platforins After Each Suitie

Washington U. Honeywell
P{success} | Bl | B2 | R1 | R2 || P{success} | Bl | B2 | R2
Initial 7.00 | 3.00 | 10.0 | 3.00 7.00 | 3.00 | 3.00
Sortie 1 0.14 6.40 | 3.00 | 8.60 | 3.00 0.19 4.80 | 3.00 | 0.10
Sortie 2 0.29 5.50 | 3.00 | 7.10 | 2.90 0.34 4.74 | 3.00 | 0.002
Sortie 3 0.33 4.80 | 3.00 | 6.70 | 0.50 0.46 4.74 | 3.00 | 0.00

Table 15.4: Example 2: Probability of Success and Remaining Number of Platforms After Each Sortie

‘Washington U. Honeywell
P{success} | B1 | B2 | R1 | R2 | P{success} | B1 | B2 | R2
Initial 7.00 | 3.00 | 10.0 | 5.00 7.00 | 3.00 | 5.00
Sortie 1 0.01 5.40 | 3.00 | 9.90 | 4.80
Sortie 2 0.02 4.30 { 3.00 | 9.80 | 4.70
Sortie 3 0.04 3.60 | 3.00 | 9.60 | 4.70

15.5 Conclusions and Recommendations

In this experiment, we have compared the platform loss and probability of success values between Wash-
ington U. and Honeywell results on two example missions, each consisting of three sorties. Despite running
our SLQM algorithm for 50 iterations, convergence to a small value of the control update (which would
indicate a possible Nash solution) was not achieved in either example, although the unit trajectories and
platform loss numbers were reasonable, given the mission objectives.

In the first example, our results were similar to Honeywell’s. The second example resulted in drastically
different attrition numbers, due to an increase in the initial number of Red fighters from 3 to 5 and their
probability of kill by 50%. This indicates the sensitivity of our algorithm, and possibly the sensitivity
of the Nash solution concept, to initial states. On the other hand, our solution yields optimal (or near-
optimal) routes and firing intensity values, given the cost function, which are not part of the Honeywell
model.

The Honeywell approach is based on maximizing the probability of success, while our approach tries
to find the saddle-point of a cost function. It may be worthwhile to spend some effort to investigate how
the selection of weights in the cost function affects the probability of success. Even better would be to
devise a “cost translator”, which will yield good weight values (for which a Nash solution exists) that can
reflect the trade-off between desired probability of success and acceptable platform loss.

283

284

Bibliography

(1] J. Jelinek, Modeling Complex Battles, Part I, Memorandum, Honeywell Technology Center, Min-
neapolis, MN, September, 2000.

[2] J. Jelinek and D. Godbole, Model Predictive Control of Battle Dynamics, Memorandum, Honeywell
Technology Center, Minneapolis, MN, May, 2000.

[3] J. Jelinek, Joint Ezperiment Honeywell, Rockwell, OSU, and WUSTL, Memorandum, Honeywell
Technology Center, Minneapolis, MN, Feb. 12, 2001.

286

Chapter 16

Experiment 16: Controller
Computational Complexity:
Correction

16.1 Executive Summary

The purpose of Experiment 16 is to correct an error present in the subprogram that evaluates the Jacobian
of the model MDCM. This error would have affected the results in cases in which multiple units are
deployed against multiple units and some units are not fired upon. This error affects only one such case
in the Interim Report (experiments 1 through 12), that is experiment 5.3.2. Therefore, a corrected version
of the subprogram for computing the Jacobian has been developed, and corrected computational results
are reported in this chapter. Even with this change we can draw the same conclusions as in Experiment
5; namely, the computational time is a quadratic function of the number of units.

16.2 Introduction

The original purpose of Experiment 5 in Chapter 5 of the Interim Report and of this Final Report was
to perform a number of experiments to test the following hypothesis: The computational complexity of
the differential game technology based controller increases quadratically as a function of the number of
units and linearly as a function of the mission duration.

One experiment run reported in Chapter 5 showed that the units not being fired upon did not move,
contrary to intuitive expectations. After a careful examination, we found an error in the subprogram
that evaluates the Jacobian of the MDCM model (Mission Dynamics Continuous-time Model). This
error would have affected the results in cases in which multiple units are deployed against multiple units
and some units are not fired upon. There is only one such case in the Interim Report (Experiments 1
through 12), that is experiment 5.3.2, in which two units out of six remain fixed in their initial positions.
Therefore, a corrected version of the subprogram for computing the Jacobian has been developed, and
corrected computational results are reported in this chapter.

In the original experiments, both the plant and controller models are the same, given by MDCM. In
a first set of experiments the number of units in the scenario is increased while the mission objectives
and duration are kept constant. In a second set, the mission duration is increased, while the mission
objectives and the number of units are kept constant. The computation time and the number of iterations
required for the computation of the control law to converge were recorded in both cases.

287

16.3 Experiment 5.1: The Number Of Units Is Increased While
The Mission Duration Is Kept Constant

In this set of experiments, the mission duration is kept constant at 20 minutes.

Five experiments have been conducted for each of the following cases: 1 unit vs. 1 unit, 2 vs. 2, 3 vs.
3,4 vs. 4 and 5 vs. 5. In these 5 experiments for each n vs. n case (1 < n <5), the units categories,
initial conditions, target locations and nominal trajectories as well as the weights in the cost function
may vary. The computational time and the number of iterations are recorded for each experiment.

16.3.1 One vs. One

In this section, the results reported in Chapter 5 were correct and thus there was no need to redo the
experiments.

16.3.2 Multi-units Case

An example for multiple units case was reported in Chapter 5 for 3 units vs. 3 units. Here the corrected
version of the Jacobian subprogram yields results in which all units now move from their respective
starting positions.

Table 16.1 summarizes the pertinent information for the two opposing forces in that specific example.
The manner of engagement in that example is: R1 and R2 are programmed to attack Bl and R3 is
programmed to attack B3. Bl and B2 are programmed to attack R1 and R2 respectively, and B3 is
programmed to attack R3. The choice of the weights is slightly different from those of the Experiment
5.1.

Table 16.1: Data for Three vs. Three

B1 B2 B3 R1 R2 R3
Unit categories bombers | bombers | ground | bombers | interceptors | ground
Initial no. of platforms 10 10 10 10 10 10
Initial no. of weapons 10 10 10 10 10 10
Initial position (20,53) (20,50) (45,47) (80,53) (80,50) (55,47)
Target location (70,63) (80,52) (53,48) (30,63) (20,48) (43,46)

Figures 16.1 - 16.2 show respectively the initial state trajectories and the convergence of the control
updates ||6u||. Figures 16.3 - 16.5 present the Nash solution; specifically Figure 16.3 presents the Nash
solution trajectories, Figure 16.4 presents the corresponding firing intensities and Figure 16.5 presents
the history of the number of platforms. With a convergence criterion of the norm ||du|| of the control
change du less than 0.01, convergence is attained after 34 iterations. The total simulation time is now
601.13 sec.

The main difference from the previous simulation results reported in Chapter 5 consists of the move-
ment that units B3 and R3 now show, in agreement with the intuitive expectation based on the choice
of the weights for the cost function. In general, the corrected version of the Jacobian subprogram makes
a difference in scenario files in which some units are not shot at by an enemy unit.

16.3.3 Multi-units Case And Computational Complexity

Due to the correction made for the Jacobian computation, the computational time (601.15 sec.) is slightly
longer than what was reported in Chapter 5 for the case of 6 units. However, we may draw the same
conclusion as before. This can be verified by analyzing Figure 5.11 of Chapter 5, which is also shown
here as Figure 16.6. When the number of units is six, as analyzed here, the computational time is 601.13

288

B1:bomber,B2:intercepter,B3:interceptor, R1:bomber,R2:interceptor R3:bomber
100

90}
80
70+
60 ™ ™

% Time:

e ¥ U s ~83 20.0min
®r ™

&2 50

400

30

0 L L . : L s " L L i

0 10 20 30 40 60 70 80 %0 100

50
€, (km)

Figure 16.1: Initial Trajectories for Three vs. Three

15 T T T T T T

Naull

051 \ 4

T —

1 L | ——
0 5 10 15 20 25 30 35
number of iterations

Figure 16.2: Convergence for Control Updates for Three vs. Three

sec. Even with this change we can draw the same conclusions as before. Namely, the computational time
is a quadratic function of the number of units.

289

B1:bomber,B2:intercepter, B3 interceptor, R 1:bomber R2:interceptor R3:bomber
100

01

601 R - T8

: o) R Time:
2 50 . ™ 20.0 min

40+

301

20

0 L L . . ‘ . + . . s
0 10 20 30 40 50 60 70 80 90 100

g, tkm)

Figure 16.3: Nash Trajectories for Three vs. Three

B1:biy, B2:cyn, B3:gm, Rired, R2:mag, R3:ylw

08 i
s :
o6l

04

0.2

2 CH— k| i. I ! 1] 3
4 2 4] 8 10 12 14 16 18 20
time (min)

08

04r

A
A
02F /?/\\
o AN . ; . : ; ‘ ,
2 4

.
[8 10 1?2 4 16 18 20
time (min}

Figure 16.4: Nash Firing Intensities for Three vs. Three

290

B1:bly, B2:cyn, B3.grn, R1:red, RZ:mag, R3:ylw

0 1 i L Lo 1 i 1 2)
0 2 4 6 8 10 12 14 18 18 20
time (min)

o : : 1 1 1 t L L .)
0 2 4 6 8 10 12 14 16 18 20
time {min)

Figure 16.5: Nash Number Of Platforms for Three vs. Three

Computational Time Changes as the Number of Units is Increased from 2to 10
T T i Y

T ¥ ¥

2000

1800 !

:

d

Computational Time
s
=3
T
-

g

400+ 1

2000 h

0 s L L 1 s L L

6
Number of Units

Figure 16.6: The Computational Time Changes As The Number Of Units Is Increased

291

16.4 Experiment 5.2: The Mission Duration Is Increased While
The Number Of Units Is Kept Constant

In this set of experiments, previous results still hold.

16.5 Conclusions

The use of the corrected Jacobian subprogram does not change substantially the main conclusions of
Chapter 5. They are: the computational time required to reach the convergence criterion depends on
many factors, such as the units categories, the number of units, initial trajectories, weights in the cost
function, step size in our numerical procedure and the manner of engagements as well as initial positions
and target locations. Similarly the number of iterations required to reach convergence depends on the
same factors. In our experimental results, major factors which affect the computational time are the
number of units and the mission duration. For our experiments the computational time of the controller
increased quadratically as a function of the number of units and linearly as a function of the mission
duration, while the number of iterations itself remained relatively constant as a function of the number
of units. This last point was a pleasant surprise.

292

Chapter 17

Experiment 17: Controller with a
Kalman Filter for Estimation

17.1 Executive Summary

In this chapter, we present how an algorithm based on the Extended Kalman Filter (EKF) for state
estimation is used in a differential game, which models the air operations of two opposing forces. We
show the overall structure of the game in a block diagram. We present the implementation of the algorithm
in a flowchart. We also present simulation results.

In an air operation game, it is reasonable to assume that one does not get direct information about
his enemy’s input. In this paper, we present an approach for estimating the states of the friendly as well
as enemy forces and compare their respective simulation results. The Kalman filter due to Darouach et
al. treats the enemy inputs as part of the extended state and obtains an estimate of both the state of
the two forces and the input of the enemy. But their filter is designed for linear time-invariant systems.
Hence, we present an extension of their filter to a nonlinear time-variant system.

The extended Kalman filter algorithm presented in this report is capable of estimating the states of
both forces in the presence of process noise as well as sensor noise. We note that the estimates of the
enemy inputs are too noisy to be directly useful. However, our game-theoretic controller requires only an
estimate of the enemy state and it does not require any estimates of the enemy input. We thus observed
the game-theoretic controller remained effective when the extended Kalman filter is introduced in the
loop.

17.2 Introduction

The purpose of the experiment is to show that the current differential game technology, combined with
an extended Kalman filter, provides an effective means of countering the enemy actions under ideal-
ized situations with perfect information about enemy initial conditions and objectives, but with noisy
measurements of a subset of the enemy state.

Description: Both the plant and internal models are the same, i.e., the MDCM (Mission Dynamics
Continuous Model). Increasing levels of noise will be added to the state variables when constructing the
observed state variables (the output variables). Some of the enemy state variables (weapons per platform
first, and number of adversary platforms next) will be removed from the set of output variables thus
making them not directly observable. The control actions of the Blue and Red teams are generated by
the proposed game theoretic algorithm.

293

The current differential game technology, combined with an extended Kalman filter (EKF) provides
an effective means of countering the enemy actions under idealized situations with perfect information
about enemy initial conditions and objectives, but with noisy measurements of a subset of the enemy
state. The algorithm based on EKF adequately estimates the unknown red state in the presence of
process and observation noise.

Consider a dynamical system governed by the following equation,

La(t) = £(a(0),u(t),) + (), ¢ lto,17); 3(to) = 20, (17.1)

and a observation process given by

y(t) = h(z(t),u(t), t) + v(t), t € [to, ts], (17.2)

where the control u is an R™- valued function on [tg,tf], f(z,u,t) is an R™-valued continuously dif-
ferentiable function on R™ x R™ x R, h(z,u,t) is an RP-valued continuously differentiable function on
R™ x R™ x R, the initial state zy is a Gaussian random variable, and the process noise w(t) and the mea-
surement (sensor) noise v(t) are Gaussian white noise processes. We assume that these random variables
and random processes are mutually independent. For any fixed initial state z(fp) = 29 and any admissible
control u of some restricted class U, we assume that, equation (17.1) has a unique solution z. Such a
solution z is called the trajectory of the system produced by control w and denoted by zfu]. Rigorous
definition of (17.1) by Ito’s stochastic integral and the theory of stochastic differential equations can be
found in [1], [3] and [4].

Our dynamical system (17.1)-(17.2) models a game played by opposing military forces in battle
through their air operations. The control function u consists of two parts, u® and uf, correspond-
ing to the two forces, the Blue and the Red forces: u = (u?,uf). In actual theaters for military air
operations, information is sometimes not available and is corrupted by measurement errors and mislead-
ing signals from the enemy, even when available. These corruptions are modeled as white noise error
processes in (17.1)-(17.2). We investigate the problem of estimating the state of the enemy from noisy
signals about the enemy location without knowing the numbers of the enemy platforms (a part of the
enemy state) and the control inputs u® of the enemy. We then propose an extended Kalman filter for
the problem and evaluate its effectiveness in the closed-loop of a game-theoretic controller.

In this report, for practical purposes and the flexibility of analysis, we replace the continuous-time
model (17.1)-(17.2) by the following discrete-time dynamics and observation process:

ZTit1 = fr(mg,ug) +w, £ >0; x0 = 20, (17.3)

Y = hk(zk,uk) + v, k>0, (17.4)

where fi(z,u) is an R™-valued continuously differentiable function on R™ x R™, hi(z,u) is an RP-valued
continuously differentiable function on R™ x R™, the initial state z is a Gaussian random variable,
and the process noise wy and the measurement noise vy are zero-mean Gaussian white noise sequences
uncorrelated with each other and with the initial state zg of the system. Their respective covariance
matrices are given as

E(ww') = W, E(w') =V, where W >0, and V > 0 are diagonal. (17.5)

Here, we also assume that each control input uy consists of two parts, uf and uf corresponding to the
two forces, the Blue and the Red forces: ux = (uf, uft). In this report, we take the point of view of the
Blue force and construct a Kalman filter for the Blue force. We suppose that the enemy inputs (i.e., uff)
are unknown. Thus, we need filters which do not make use of the enemy inputs uft.

294

Section 17.3 is devoted to a Kalman filter technique for estimation in systems with unknown inputs.
We present a Kalman filter for estimating the enemy state and the enemy inputs for a linear system. This
filter was adapted from the result by Darouach et al. [2]. We also propose an extended Kalman filter
for a nonlinear system, and then, we apply the extended Kalman filter to a nonlinear, continuous-time,
stochastic air operation game. We present the differential game in the battlefield. The experimental
scope and setup is given in Section 17.4, and the simulation results and analysis are given in Section 17.5.
The chapter concludes with some conclusions.

17.3 Kalman filters for systems with unknown inputs

Linear Kalman filter for estimating states and enemy inputs: We consider the following linear
model:

Ty = ApZp + BEuE + Bﬁu;}} +wg, k> 0; o = 29, (17.6)

and
yr = Hyok + vk, k2 0. (17.7)

Here, for time k, zp € R™ denotes the state vector, uf € R™ denotes the known Blue control input,
uft € R™2 denotes the unknown Red control input and y; € R? denotes the output vector. The noise
processes wy and vy were as given in Section 1 and the matrices Ay, BE ,BF and Hj have appropriate
dimensions.

We consider the problem of recursive estimation for linear system (17.6)-(17.7) by estimating the state
vector zx, and the unknown input uff from Kalman filtering without knowing the value of the enemy mput
ufl. One possible solution is to construct a Kalman filter by defining a new state vector Xy = (z}, uff 4)’
This approach was taken and worked out for time-invariant case by Darouach et al. [2] under the time
invariant version of the following assumption:

Rank Condition 1
rank(Hy) = p, rank(BE) = ma,
mg <p, and rank(HyBf) = may, for all k.

- Let &, denote the estimate of x based on the measurements y up to and including time instant [.
Other estimates are defined similarly. We extend the Kalman filter in Theorem 3 in [2], which is for a
time-invariant system, to the following time-variant version.

Proposition 5. Assume that Rank Condition 1 is satisfied for the linear system (17.6)-(17.7). Then the
optimal estimates for the entire state and the unknown Red inputs are obtained by

ik = Ak Ersk + BE uf, (17.8)
Ery1/k+1 = Ty + BE ﬁ]?/kﬂ

+Ki41 {!/k+1 — Hyyq (ifk/k + Bf ﬁkR/kH) }, (17.9)
N R _
“f/k“ = Kipy (yk+1 ~ Hy wk/k)) (17.10)

where the Kalman gain matrices, Ki,, for the state estimate and K ,'c‘fl for the unknown input estimate,
are obtained respectively by

- -1
K = (Pk/;‘ + Hep' VT ch+1) Hen' V7, (17.11)
R R _
Kty = Pyt Hend V g (17.12)
where B

295

and the estimation error covariance matrix

. . R . ’
Pk =FE (Xk/k. - Xk/k) (Xk/k - -;tk/k>
with Ay, = (z;c,uﬁ_ll)’ and X = (& ks (ﬁkR_l/k)')’ is partitioned as

P, PE
Pr/x = , (17.14)

Pif/kx P/Zf-uk

and each block matrix has the following form:

PYsr = § BE'Hiwt' (V + Hepr PogiHirr') ~ HenBE 3 (17.15)
R _ B -1

PE st = Pl e Bt BE (Bf’Pk/le,f‘) : (17.16)
R = P _ -1

e = Pl BE Byt (P’ + He'V i) (17.17)

1
- — _ —1
Peovjie = { Pojit + Hin'V " \Hipy — B BE (BE'PBR) BE'P' Y . (178)

Extended Kalman filter for estimating states and enemy inputs: We assume in this section
that the function f defined in (17.3) is nonlinear but the function hy defined in (17.4) is linear, i.e.,

yr = Hyzp + v, k2 0. (17.19)

Since f(z,u) is a continuously differentiable function of (z,u), we apply a linear approximation to the
right hand side of (17.3) around (Zy/x, %), where i = (ug, uk/k+1) This is a good approximation so
long as ||ul| is small. Then, by applying the Kalman filter described in Proposition 5 to this lmear (or
affine) system and also replacing the state zj by its estimate I/, and the unknown input uk by its
estimate uk k1 We obtain the following extended Kalman filter:

Tisk = Arrsk + BE uf, (17.20)
Brg1/ker = T + BE ﬂ,’f/kH
+K1f+1{yk+1—Hk+1 (ik/k + Bf a?/k+1)}a (17.21)
~ wB _
“f/kﬁ =Kin (yk+1 — Hiq xk/k)) (17.22)
where
Ofk .
Ak = af (mk/k)uk)y (1723)
Of
B = 9 B(Ik/k,uk) (17.24)
A fr
Bf = an == Ek ks Tr), (17.25)
(17.26)

296

where the Kalman gain matrices and the estimation error covariance matrix has the same form as in
Proposition 5.

Extended Kalman filter algorithm:The block diagram of the extended Kalman filter for estimat-
ing state and enemy input, is shown in Fig. 17.1. This diagram also shows the continuous-time plant
and how the filter is connected to the plant.

The inputs to the filter are the sampled output vector y, of the plant and the sampled input vector
uE for the friendly Blue unit. The outputs of the filter are respective estimates, Zx i and ﬁkR/ K410 of the
state vector zj and the enemy input vector uf. The flowchart of the algorithm is given in Fig. 17.2. As
the original filter due to Darouach et al. was devised for linear, time-invariant discrete-time plants, we
employ samplers and an extension of their Kalman filter to a nonlinear time-varying system. We thus
linearized our model around an estimated nominal trajectory and discretized it. We then applied the
Kalman filter algorithm to the linearized discretized model.

297

L . R
Extended Kalman filter for estimating state xk and enemy input U,

w](t) v(t)
|
') i (t) 0]
t xit yi
> ¢ - + J Integrator +\ -
()
- Continuous-time Plant

Sampler Sampler

o 3/

X
Advance ﬁf,k +
‘ . 1.
R la
u
Kk+1
v, + Ve
A A Tetd 4
I<’:H(I _Ii;wlgz Kﬁl) * (\;
(
— yk+l/k+l
Xeix
Discrete-time Extended KalmanFilter

Figure 17.1: Block diagram of the extended Kalman filter

298

Set: Ar=0.Imin. 1, =0,¢, =20mink =0
x(0Lu® (O uf ()t <r<t; for plant
£(0),4%(0), P*(0) for Kalman filter

W and V noise covariance matrices
r—

>y
Given x; = x(#;)=x(At*k) and
WP () uf@)re [t 00,1 =[a1%k,At* (k+ 1), compute
Xgpy =x(t) = x(A*(k+ 1) and Yo = y) = y(Ar*(k+1))
and set uf =u’ (1)

y

Ay

S FUPIN T «!. compute

Given and
a ~ B «R __B a - B -R — a - 8 ~R a -
= O Ry yh i ik ker) BE = Rk ke oMic 28k rker) Br = JECTITILI RUIVITSY) H, = 8 (X p)
- ax LR S P P T auk] k= ox

A, = BE = [0 e BEar B =[5 e Brdr, H, = H,

L]

A BB
Compute X, = A%, + By u,

. _ ; o LB, B
Residual: ki = Vit — Hyp (AXeyy + Bruy)

1]

Pejg = APy Ay + W

Kig =P+ HypptV T He) Hg v ™!

Pt = [BRH y(\(F + H o Py i H o)™ H oy BRY!

Pivireer = [P + HootV ' Hoyy - PR BE (BEP B BEPT AT
ka:lklk+l = P PO BE(BE P B

R R
u®x u R p -1 -1 ! -1 -1
PéVteser = Piaan B Piye (Piyie + H otV 7 H g 4y)

R R
u _ u'x ' -1
Kot = PlsvieaniH gV

Y

Compute: Unknown input estimation

~ R _ uk
Uik = Kiainen

Y

Compute: State Estimation

. . 5B B, BRAR x 5 RAR
Xpetrkaor = AgXppe ¥ Brug + B, o+ KU - Hyp Bt i)

I

yes

k=k+1 0
no

Figure 17.2: The flow chart of the estimation algorithm.

299

;
;

Differential game: The overall game is expressed as the following minmax problem:

J* = min max J(u?, u®), (17.27)
ul Wl

where the Red force tries to maximize the payoff function J(u®,u®) and the Blue force tries to minimize
the same payoff function. Here the problem is defined over the time interval [to, ;] between the initial
time to and the terminal time ¢;. The optimal value J* of the payoff function J(u®,u®) is called the
value of the game.

We assume that each unit is homogeneous. By this we mean that each bomber unit consists of
bombers of the same type, each ground troop unit consists of ground troops of the same type, and so
on. In other words, each unit consists of platforms of the same type. The platforms we may consider
are bombers, SAM missile launchers, electronic jammers, weasels, fighter-interceptors, personnel carriers
and tanks.

We report the simple cases of our differential games in this report: The Blue and Red forces have
one, two and four units each depending on the scenario type. Both units start with 10 platforms. For
example,in the scenario crossll, the Blue unit (B1) starts with 10 interceptors and the Red unit (R1)
starts with 10 bombers.

The friendly (Blue) unit control is based on the optimum linear feedback of the estimated state around
the Nash solution. The adversary (Red) unit control input may be given manually by a human operator.
The goal in the game is as follows.

The Blue interceptors try to destroy as many Red bombers as possible and to reach their own respective
destinations, and the Red bombers try to preserve their own platforms and to reach their own respective
destinations.

If the estimated state vector deviates from the current Nash equilibrium solution, the iteration stops
and a new Nash equilibrium solution is recalculated over the remaining time period.

The numerical method for finding the Nash equilibrium solution is an iterative process in which a
linear-quadratic approximation of the original game is successively solved using the Riccati equation
approach [7].

17.4 Experiment scope and setup

The experimental setup for the game theoretic controller with the Kalman filter is given in Fig. 17.3. The
algorithm has been tested for the military air operation model, which is nonlinear and continuous-time.
The dynamic model of air operations for the military, and the formulation of the problem of controlling
its missions as a differential game are presented in [6]. As the original Kalman filter [2] was devised for
linear discrete-time plants, we introduce samplers and its extension to a nonlinear system. Our model is
thus linearized around a nominal trajectory and discretized, and then the algorithm is run. We consider
the simplest case in this paper: The Blue and Red forces have one unit each. Both units start with 10
platforms. In fact, the Blue unit (B1) starts with 10 interceptors and the Red unit (R1) starts with 10
bombers. .

In all the graphs to follow, the solid line represents the actual values and the dotted line represents
the estimated values.

In our simulations, the extended Kalman filter takes as inputs the noisy observations of the position
of the Blue force, (¢2, £F), the number of Blue platforms, n?, the position of the Red force, (¢F, £8) and
Blue input 7%, and it yields as output the estimates for the same variables and, in addition, the number
of Red platforms, n®¥. We note that the filter gets as input neither the number of Red platforms, % nor
the enemy input, u*.

The control inputs for the Blue and Red units are the respective velocities (@, uf) and (uff, ufh),
and the respective firing intensities (77, 7%).

If the Blue and Red units are not engaged with each other, there is no need to estimate the Red firing
intensity %, so it is estimated only when the engagement occurs. This was implemented as follows. While
the distance between the Blue and Red forces is large, the sensitivity of the number of Blue platforms

300

n® to the firing intensity 77 of the Red force is weak and the observability rank condition is almost
unsatisfied making the Kalman filter ineffective. Hence, while the distance between the Blue and Red
forces is large, we do not estimate the firing intensity 7% of the Red force, but we estimate only the
velocity control (pft, uf') and the entire state z. In this case, we assume that the Red force would not
fire: ©f* = 0.

We tested the following three levels of noise: the high level noise: 1% of the operating value for the
blue states, and 5% of the operating value for the red states; the medium size noise: 0.5% of the operating
value for the blue states, and 2.5% of the operating value for the red states; the low level noise: 0.25% of
the operating value for the blue states, and 1.2% of the operating value for the red states.

GAME-THEORETIC CONTROLLER WITH KALMAN FILTER

© O
d
R
‘o : A
Information -
Control Baitlefield State x Surveillance Measurements
> Reconnaissance
uB yB

~

X
State Estimate

Figure 17.3: The closed-loop game theoretic controller combined with the Kalman filter.

301

We did experiments for two kinds of scenarios: crossll and cross23.
We conducted simulations for crossll for the following 3 cases:

(1) Observation noise only, i.e., no process noise;

{2) Process noise only, i.e., no observation noise;

(3) Both process and observation noise.

For each case, we tested 3 levels of strength: low, medium, and high. In this report, only the results
for the high level noise for the above three cases are presented for crossll scenario.

On the other hand, we conducted simulations for cross23 scenario for only low sensor noise case.

Since the number of platforms for the Red force, 7%, is not observed, a small error in the estimation
may occur. The estimated enemy inputs (velocities and firing intensity) are used only for the state
estimation but not for feedback control. Therefore, the fluctuations in the input estimations do not cause
much error in the overall performance of the controller.

In the following graphs for our simulations, the solid line represents the actual(exact) value and the
dotted line represents the estimated value.

17.5 Experiment Results and Analysis

I- Simulation results for the scenario crossll

In this scenario, the Blue force has a bomber and the Red force has an interceptor. For this game,
the state variables and the control inputs vary as in Fig. 17.4-17.8. The observed trajectories and the
observed numbers of platforms are corrupted by a sensor noise. The scenario is illustrated by these
figures. Fig. 17.4 shows the trajectories of the Blue and Red forces. The Blue forces move from west to
east and red forces move from north to south. During the mission an engagement occurs. Due to the
engagement, both forces lose some number of platforms as seen in Fig. 17.5. Fig. 17.6 and Fig. 17.8
illustrate the weapons used in the mission and the firing intensities, respectively. Firing takes place when
both forces meet each other. The speed controls are depicted in Fig. 17.7.

302

Btinterceptor,R1:bomber

0o
80}
sof
70+
60}
B1
@ ol Time:
50 x 20.0 min
Target of B1
40}
R1
30F
20+ X
Target of R1
10t
o ,
0 10 20 30 40 50 60 70 80 90 100
& km)
Figure 17.4: Observed Trajectories of Units
Bt:blu, R1:red
12
10
B._
ﬂB 6
4k
2 L
0 1 i 1 i i 1 4 I3 1. J
0 2 4 6 8 10 12 14 16 18 20
time (min)
12
10
8...
'\R 6F
4—
2t
0 1 L i i i 1 1 1 i 1
0 2 4 6 8 10 12 14 16 18 20
time (min)

Figure 17.5: Observed Numbers of Platforms

303

B1:biu, R1:red

10
sk
¢ gL
4l
2k
0 i i 3 1 1 1. A i 1 !
0 2 4 [8 10 12 14 16 18 20
time (min)
12
10 W . o N
al
& 6l
A
ok
0 . . . : , . . ‘ . ;
0 2 4 6 8 10 12 14 16 18 20
time (min)
Figure 17.6: Weapons per platform
B1:bly, R1:red
12¢
ni
B8
1 o
0.6
04
02
o ;
0 2 4 6 8 10 12 14 16 18 20
time (min)
121
1"
,
20

time (min)

Figure 17.7: Speed Controls

304

B1:blu, R1red

1+ /—\
081
2}
o6k
041
0.2
0 L ¢ L A i A))
0 2 4 6 8 10 12 14 16 18 20
time (min)
1.2
1 b
0.8
R
T o6
04+
0.2+
0 1. i 1 i A t i i
0 2 4 6 8 10 12 14 16 18 20
time (min}

Figure 17.8: Fire Intensities

For high, medium, low sensor noise, Blue state, Red state and Red inputs are presented in Figs. 17.9-
17.17. The simulation results show that the error in the Kalman filter estimate is acceptable, though the
deviation in the estimates of the Blue number of platforms is considerable.

The first two graphs in each Blue and Red state figures are the exact, observed and estimated values
of the x and y positions of the Blue and Red forces. The third graph is the exact, observed and estimated
values of the number of platforms. Note that, we do not plot the observed number of red platforms,
because it is not observed.

The first two graphs in each red inputs figures are the exact and estimated values of the x and y
speeds of the Red force. The third graph is the exact and estimated values of the Red firing intensity.
Although the estimates of the speeds and firing intensity are fluctuating highly, their effects on state
estimation is small.

305

Case (1) Observation noise only, no process noise

Process noise: w =0

Covariance for the sensor noise: V = diag[(0.5)2, (0.5)2, (0.08)?, (2.5)2, (2.5)?]
Sensor noise is added to the state vector [£2,¢8, 0B, &R, 5.

The Blue states, Red states and enemy inputs (actual and estimated) are presented in Fig. 17.9, Fig.
17.10, and Fig. 17.11, respectively.

306

—- actual
estimate

80 ¥ 64 ¥ 105 T
70F
60 E
o P
wr
2 50t 1
o
L
wp
401 4
301 1
2 y 8 . 65 s
o 10 20 0 10 20 0 10 20
time (min.) time {min.)

time (min.}
Figure 17.9: Blue states for high sensor noise

66 T 90 v 12 T
4
npr
h-!
=
@
bty
. 30 s 4 ;
10 20 0 10 20 0 10 20
time (min.) time (min.) time {min.)

Figure 17.10: Red states for high sensor noise

307

— actual
estimate

4 4 3 v
sl
3 25}
: .l
2} : D
- s . 2r
L ke 1F
1 SRR SRty
«® .. &
e i : E)
P\,
© % o
o

ey
Y

-2}

-3 b
~4 ! -5 . -0.5 .
0 10 20 0 10 20 0 10 20
time (min.) time (min.) time {min.}

Figure 17.11: Red inputs for high sensor noise

Case (2) Process noise only, no observation noise

Covariance for the process noise: W = diag[(0.5)2, (0.5), (0.08)2, (2.5)2, (2.5)?
Process noise is added to the state vector [¢F, 5,18, ¢f, 8y

Sensor noise: v = 0

The Blue states, Red states and enemy inputs (actual and estimated) are presented in Fig. 17.12,
Fig. 17.13, and Fig. 17.14, respectively.

308

80

20

50
0

— actual
estimate

and ége

&

10.5

— actual
- estimate

. 48 . 6.5 -
0 10 20 0 10 20 0 10
time (min.} time (min.) time (min.)
Figure 17.12: Blue states for high process noise
. 80

75

70

65

« 860
°
[=4

%855

45
40)
L 35 s 4 .
10 20 0 10 20 1] 10
time (min.} time {min.) time (min.)

Figure 17.13: Red states for high process noise

309

20

—— actual
___eslimate

0.21

R R
pyandp,,

[10 20] 10 20 0 10 20
time (min.} time (min.) time {min.)

Figure 17.14: Red inputs for high process noise

Case (3) Both observation and process have noise

Covariance for the process noise: W = diag[(0.5)?, (0.5)%, (0.08)2, (2.5)2, (2.5)?]

Process noise is added to the state vector [£5,¢2, 75, ¢F,¢fY
Covariance for the sensor noise:V = diag[(0.5)%(0.5)2(0.08)%(2.5)%(2.5)?]

Sensor noise is added to the state vector [£5,¢8, 7B, R, ¢2Y

The Blue states, Red states and enemy inputs (actual and estimated)are presented in Fig. 17.15, Fig.
17.16, and Fig. 17.17, respectively.

310

— actual
estimate

10.5

80 : 64 . ;
701
60} 1
o d
e
250
©
o -
wp
40 .
30t .
20 : 48 : 65 :
0 10 20 0 10 20 0 10 20
time (min.} time (min.) time (min.)
Figure 17.15: Blue states for high process and sensor noises
—— actual
estimate
66 Y 90 T 12 T

R

R
e

nR andn

10
time {min.}

20

30
0

10
time {min.)

time (min.)

Figure 17.16: Red states for high process and sensor noises

311

—— actual
estimate

6 4 2
5 3r 4

4r 2r 1 15
3r 1

2k -4

1e

R

R
1

-1.i

~2F

S |-

-4

-6

0 10 20 10 2 o 10 20
time (min.) time (min.) time (min.)

(=

Figure 17.17: Red inputs for high process and sensor noise

II- Simulation results for the scenario cross23

In this scenario, the Blue force has an interceptor and a bomber, and the Red force has two interceptors
and a ground troop. Blue interceptor and bomber head to the Red ground troop.

For this game, the state variables and the control inputs vary as in Fig. 17.18-17.22 (Note that instead
of the observed results, the exact results are presented here). The scenario is illustrated by these figures.
Fig. 17.18 shows the trajectories of the Blue and Red forces. The Blue bomber and Blue interceptor
move from west to east towards the Red ground troop. One Red interceptor moves from north to south
to its destination and the other Red interceptor moves from south to north and also defences the ground
troop . During the mission an engagement occurs. Due to the engagement, both forces lose some number
of platforms as seen in Fig. 17.19. Fig. 17.20 and Fig. 17.22 illustrate the weapons used in the mission
and the firing intensities, respectively. Firing takes place when both forces meet each other. The speed
controls are depicted in Fig. 17.21.

312

B1:int,B2:bomb,R1:int,R2:gt,R3:int
100

Time:
80 20.0 min

701

Target of R3
60+ X

\ B1

2
i”SO-

Target of B1
40}F Target of B2
30}
R1

20 X
Target of R1

[L i It I v A 1 1 L

0 10 20 30 40 50 60 70 80 a0 100
£ (km)

Figure 17.18: Trajectories of Units

B1:blu, B2:cyn, R1red, R2:mag, R3:gm
12r

0 1 i. ’. 1 1 1 i I3 i]
0 2 4] 8 10 12 14 16 18 20
time (min)

10 T

1
0 2 4 6 8 10 12 14 16 18 20
time (min)

Figure 17.19: Number of Platforms

313

B1:blu, B2:cyn, R1:red, R2:mag, R3:grm

12r-

1]

o L L 1 L s L 1 L 1 i

0 2 4 8 8 10 12 14 16 18 20

Figure 17.20: Weapons per platform

B1:blu, B2:cyn, R1:red, R2:mag, R3:gm

081
% 6 |-

0.4+

0.8
Ryl
0.4

0.2

16 18 20

Figure 17.21: Speed Controls

314

B1:blu, B2:cyn, R1:red, R2:mag, R3:grn

081
8
T 06

041

0.8r
R
To6h

04r

Figure 17.22: Fire Intensities

Low level observation noise only, no process noise

The Blue states, Red states and enemy inputs (exact, observed, and estimated)are presented in Fig.
17.23-17.30, respectively.

315

100 T 100 T 13 T
exact traj exact traj axact traj
- observed traj —~ observed traj - observed traj
estimated traj estimated traj 12k - _estimated traj
901 E 90 1
11 b
801 1 801 1
10 “\\ b
// ‘~
.70 / i1« 70} 129 1
5 ; 5 5 8 1
o260 o & 60 { o '
w ; F
2 / E R 1
m‘v ! mm mﬂ i
s o “ 50 b S]
j / ‘
j \ \
i 5| ! 4
aof | { 4o} 1 \
/ -
i 4 e 1
30+ 1 30} J
| 3t 1
!
/
20 * 20 . 2 ’
0 10 20 0 10 20 0 10 20
time (min.) time (min.) time {min.}
Figure 17.23: Blue states for high sensor noise for unitl
100 T 100 T 13 T
exact traj exact traj exact traj
~ observed traj ~ - observed traj - - observed traj
- - estimated traj estimated traj 12r -_estimated traj |7
90 41 sof 1
"r 4
801 b 80 1 100
e 4
A\
L el L] 9t ~
o 70 N g 70 o \
5 S 5 5 \
5 e 5 58 .
afef {ageor 1% \
2 / k] - v A
m‘“ / mmm T o A
“osor 1" sof 4 1 s *y
/ J/
/ N/ 5]
sof | 1 af M 1
i
/ 4 ;
30t/ { 30 1
{ 3 J
20 - 20 - 2 y
0 10 20 [10 20 0 10 20
time (min.) time (min.) time (min.)

Figure 17.24

316

: Blue states for high sensor noise for unit2

for unit4

R
e

for unit2

and éR

R

1

g

é? and &

1o

100 Y 100 —— 13 T B—
exact traj exact traj exact traj
~ observed traj — observed traj observed traj
- - estimated traj estimated traj 124 - estimated traj |
80+ 1 80 1 B
r
1 1
1
80} i 8o 1 |
10 ! 1
\ ;
i !
70 1 TOR 1. 9 1
£ 1 =2 1
£ i €
=l | =4
8 |1 5 8 .
60 x 8 60k ! 1=
B : E 7t 1
/"‘% . j \ =
soher Kyt F 50l \ 1 % 6 \)
\ el
\ st ~
401 { 40} \ 1
‘\
. 4F E
30t { 30 o, 1
Wiy 3r 1
20 L 20 . 2 >
0 10 20 [s} 10 20 0 10 20
time {min.} time (min.) time (min.)
Figure 17.25: Red states for high sensor noise for unitl
100 T 100 T 13 Y
exact traj exact traj exact traj
— - observed traj +— - observed traj — ~ observed traj
-~ - estimated traj - - pstimated traj 12f imated traj |1
a0 1 90 1
1"E 1
Lo v,
80 ke bty B0l 1 o |
n
L J L { g+ 1 b
70 o 70 o !)
= c
t - P
8 B 8 | I
60 =& 60F 1 %* \
-] ° L \ N
s & 7 \
o « 4
50 4 50 Mot gt sl \]
\
A
5F \ k
40} 1 40} 1 |
4+ \\‘ b
N
30} g 30} E Y
3r -
20 > 20 ’ 2 .
0 10 20 0 10 20 0 10 20
time {min.} time {min.) time {min.}

Figure 17.26: Red states for high sensor noise for unit2

317

100 P —— S——— 13 g ——
exact traj exact traj
observed traj — observed traj abserved traj
estimated lraj o estimated traj 2 - estimated traj |
g0l 1
"t 1 1
(W
8o} e 1 eof 1 '
Mﬁ 10 AR A
Wbt i e
Tt
« T0F { o 70t 1 « 9 1
H H E
=l 3 2
5 5 58 1
x 2 60F 1o & 60F 1 EP
np ar ° 7
o o = B
& & &
o~ [4 [:4
' s0t W sl s |
Jl‘
5]
a0} { 4o} ~]
’j.’
/ Y '
30 4 30r / 1
.f 3r 4
A
{
20 ’ 20 t 2 L
0 10 20 o 10 20 o 10 20
time (min.) time (min.) time (min.)
Figure 17.27: Red states for high sensor noise for unit3
50 Y 50 Y 4 v
40} 4 a0t 1 3t)n 1
5
'y
30t i 30} 1 e B 1
L
200 1 20f 1 o 1
i
10+ 1 10f 1 N
8 4} AN”"[:"h"‘lr"‘\:#'k~v\’u“m‘\f‘w’v“b"v‘*“‘\ & O s a2y et miorten, b 5 ~1F 4
.o e ' R w o
EY ®
- £ «
-10f 4 -t0r 4 -2t E
-20} {1 -20f {1 -3r 1
-30} i -30f 4 -af 1
a0} 1 -a0b 4 -5t 1
-50 - -50 : -6 :
g 10 20 0 10 20 0 10 20
time {min.) time {mir.} tme {min.)

Figure 17.28: Red

inputs for high sensor

318

noise for unitl

50 - ¥ 50 T 4 T
‘n : :
L 4 b | p L
404 e :i 40 3
By
soplt ",lf;g’ ‘I e 2} J
‘Ml it 1‘2“! i "
iﬂl IR SR
P unu‘ o ’ii.] s
'f{'!““'i{! [g!ijiul,to:'
g sl il iy
10—!“}\1':4.1 lﬁwt\,{“i 9‘ “; ol -
o iy llh y | "
g | \. "‘“v H
§° | ’[‘r 8-t
= | L
= it ?'H"i AN
Y W NW f‘[# ot
| { “Mi,l i
| e
i T g
feial g bl
—20-.‘ i q, AR HIRRE BT
by it il {
N | !1 |
~30+ | ' -4}
4 -0} i -sf
~-50 L -6 A
20 10 20 0 10 20
time {min.) time (min.} time (min.}

Figure 17.29:

Red inputs

for high sensor

noise for unit2

50 T 50 ¥ 4 T
a0t 40} 3t 1
3ol {1 3o} 1 2t 1
20+ 1 201 1 b
i
K TRRR L
10} 1o} ol — o i ‘w"’v“&j
2 2 2
[~4 [=] ¥
; W gttt ; I TENRL ot st i nda A ,g
ce 0 it ! R EEM Sg O ko i Mt 2ot gy B -1 1
= -2 L3
- .xl'N xg’
-0} -10f -2t 4
-20+ -20+ {1 -3 1
-30} {1 -3} -4}
-40} 4 -dof { -st :
-50 . ~50 ’ -6 y
Y] 10 20 10 20 4 10 20
time {min.} time {min) time {min.}

Figure 17.30:

Red inputs

for high sensor

319

noise for unit3

17.6 Conclusions

In this report, we have presented how the extended Kalman filter algorithm for state estimation is used
in a differential game, which models the air operations of two opposing forces. The air operation model
is nonlinear and time-varying. As the filter due to Darauch et al. is designed for linear time-invariant
systems, we have developed an extension of their filter to a nonlinear time-variant continuous system.

The extended Kalman filter presented in this report is capable of estimating the states in the presence
of process noise as well as sensor noise in different magnitudes.

We have observed that the game-theoretic controller remained effective when the extended Kalman
filter is introduced in the feedback loop. The closed loop filter performance is verified by the simulations
for different scenarios.

320

Bibliography

1] K. J. Astrom, Introduction to Stochastic Control Theory, Academic Press, New York, New York,
1970.

[2] M. Darouach, M. Zasadzinski, A. Bassong Onana and S. Nowakowski, ”Kalman filtering with un-
known inputs via optimal state estimation of singular systems”, Int. J. Systems Sci. 26, 2015-2028
(1995).

[3] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag,
New York, New York, 1975.

[4] B. Oksendal, Stochastic Differential Equations, fifth edition, Springer-Verlag, Berlin, 1975.

[5] R. Nikoukhah, A. S. Willsky and B. C. Levy, "Kalman filtering and Riccati equations for descriptor ‘
systems”, IEEE Trans. on Automatic Contol 37, 1325-1342 (1992).

[6] H. Mukai, Y. Sawada, I. Tunay and P. Girard, "Mission Dynamics Continuous-time Model”, Work-
ing Report, Washington University JFACC Team and SAIC, Department of Systems Science and
Mathamatics, Washington University (2000).

[7] H. Mukai et al., ”Game-Theoretic Linear-Quadratic Method for Air Mission Control”, Proceedings
of the IEEE Conference on Decision and Control, CDC 2000, 2574-2580 (2000).

321

322

Chapter 18

Experiment 18: Method of
Characteristics: Addendum

18.1 Executive Summary

The purpose of Experiment 11 was to verify that the solution computed by the Sequential Linear-
Quadratic Method (SLQM) was the same as the Nash solution computed by the Method of Charac-
teristics. We verified that the solutions computed by the Sequential Linear-Quadratic Method (SLQM)
were indeed the same as the Nash solutions computed by the Method of Characteristics under several
scenarios. However, the experiments in Chapter 11 all involved one Blue unit against one Red unit. In
Experiment 18, we extend the results in Experiment 11 to a scenario of multi-units against multi-units.
Specifically, Experiment 18 tests the Method of Characteristics for the case of three blue units against
three red units.

18.2 Purpose of the Experiment

The purpose of Experiment 18 is to test whether the Method of Characteristics works for multi-units
against multi-units.

18.3 Hypothesis

The method is successful in the case of multi-units against multi-units.

18.4 Methods

The algorithm is described in paper [1].

18.5 Experiment Scope

In this scenario, three blue units (B1: bomber, B2: interceptor, B3: interceptor) encounter three red
units (R1: bomber, R2: interceptor, R3: bomber). The dynamics for the characteristics equations
have been computed but are not given here explicitly. The parameter values are a®? = o®* = (.05,
b = b = 0.0, and pP* = p™ = 0.0. When control penalties are used, the parameter values are
REY = RBY = RE* = RIY = 150, and RE* = R = 2.5, for i=1,2,3.

323

18.6 Experiment Results

The results of experiment are shown in the following figures. Figure 18.1 shows the Nash trajectory for
the Blue and Red units. Figure 18.2 shows the Nash engagement imntensities as well as the Nash number
of platforms for the both forces.

Backward Integrartion
70 T T T T T T T

65 -

55

50

45 Red Target © - - R~ 7 .

40t .

35 | 1 1 1 L 1 1
10 20 30 40 50 60 70 80 90

Figure 18.1: Nash Trajectories for Three Units vs. Three Units

18.7 Analysis

The results obtained by the Method of Characteristics for multi-units against multi-units match very
closely those obtained by the Sequential Linear-Quadratic Method.

18.8 Conclusion

The Method of Characteristics is a feasible procedure for verifying the results of the Sequential Linear-
Quadratic Method.

324

1.5 .
— B1
@ - - B2
® - B3
P
3 1
o
Q
=
g] ~
:EOS I
i 0.
° I
2
o
0 n
0 10 15 20
14
— B1
13 - - B2
o0 - B3
=12
£
c 11
£
g o—m—mm™m - —-—- - - - -
g \
= o} E P
8
7 L
0 5 10 15 20
Time t

1.5
-— R1
vl - R2
8 - R3
2
@ 1
ol
2
£
o
£
i 05
©
()
o
0 " "
0 10 15 20
14
— R1
13 - - R2
- R3
m::12>
)
§11
5
=40
a N
m 9 N e e e o o e o o]
4
8
7 "
0 5 10 15 20

Time t

Figure 18.2: Nash Engagement Intensities and Number of Platforms

325

326

Bibliography

[1] I N. Katz, H. Mukai, H. Schattler, and Mingjun Zhang, Solution of a differential game formulation
of military air operations by the method of characteristics, Proc. of the 2001 American Control
Conference, Washington, D.C., June 2001.

327

328

Chapter 19

Exper